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SU(2) REPRESENTATIONS AND A LARGE SURGERY FORMULA

ZHENKUN LI AND FAN YE

Abstract. A knot K Ă S3 is called SUp2q-abundant if for all but finitely many r P Qzt0u,
there is an irreducible representation π1pS3

r pKqq Ñ SUp2q, and the slope r “ u{v ‰ 0 with no

irreducible SUp2q representation must satisfy ∆Kpζ2q “ 0 for some u-th root of unity ζ. We prove

that a nontrivial knot K Ă S3 is SUp2q-abundant unless it is a prime knot and the coefficients of

its Alexander polynomial ∆Kptq lie in t´1, 0, 1u. In particular, any hyperbolic alternating knot

is SUp2q-abundant. The proof is based on a large surgery formula that relates instanton knot

homology KHIpS3,Kq and the framed instanton homology I7pS3
npKqq for any integer n satisfies

|n| ě 2gpKq ` 1. By the same technique, we can calculate many examples of instanton Floer

homology. First, for any Berge knot K, the spaces KHIpS3,Kq and {HFKpS3,Kq have the same

dimension. Second, for any dual knot Kr Ă S3
r pKq of a Berge knot K with r ą 2gpKq ´ 1, we

show dimC KHIpS3
r pKq,Krq “ |H1pS3

r pKq;Zq|. Third, for any genus-one alternating knot K and

any r P Qzt0u, the spaces I7pS3
r pKqq and yHF pS3

r pKqq have the same dimension.
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1. Introduction

The fundamental group is the most important invariant of a 3-manifold. Since it is usually hard
to understanding the fundamental group directly, studying homomorphisms from the fundamental
group to simpler groups (like SUp2q, SLp2,Cq, SLp2,Rq) is a fruitful approach to obtaining com-
putable invariants. For example, the Casson invariant [AM90] and the Casson-Lin invariant [Lin92]
are constructed using SUp2q representations, and the A-polynomial [CCG`94] is constructed using
the SLp2,Cq character variety.

In this paper, we study SUp2q representations of a 3-manifold Y , i.e. homomorphisms from the
fundamental group π1pY q to SUp2q. For a knot K in S3, let ∆Kptq P Zrt, t´1s denote its Alexander
polynomial with conditions

(1.1) ∆Kptq “ ∆Kpt´1q and ∆Kp1q “ 1.

For a knot K in a closed 3-manifold Y , we write Y pKq “ Y zintNpKq for the knot complement and
YrpKq for the manifold obtained from Y by Dehn surgery along K with slope r in some basis of
H1pBY pKq;Zq. If K is null-homologous, then we use the meridian and the Seifert longitude of K
as a canonical basis of H1pBY pKq;Zq.

Definition 1.1. An SUp2q representation is called abelian if the image is contained in an abelian
subgroup of SUp2q. An SUp2q representation is called irreducible if it is not abelian. A knot
K Ă S3 is called SUp2q-abundant if the following two conditions hold.

(1) For all but finitely many r P Qzt0u, the manifold S3
r pKq has an irreducible SUp2q representation.

(2) For any r “ u{v ‰ 0 so that S3
r pKq has only abelian SUp2q representations, there is some u-th

root of unity ζ so that ∆Kpζ2q “ 0.

Remark 1.2. The first condition implies K is not SUp2q-averse in the sense of [SZ20]. Note that if
b1pY q “ 0, then an SUp2q representation of Y has abelian image if and only if it has cyclic image.
The second condition corresponds to some nondegenerate condition in [BS18b, Corollary 4.8]. By
[BS19, Remark 1.6], when u is a prime power, ∆Kpζ2q ‰ 0 for any K and any u-th root of unity ζ.
Moreover, rationals with prime power numerators are dense in Q.

Suppose K Ă S3 is a nontrivial knot and r P Q. It is already known that if |r| ď 2 [KM04a,
Theorem 1] or |r| is sufficiently large [SZ20, Corollary 1.2], then SrpKq has an irreducible SUp2q
representation. There are many other closed 3-manifolds with irreducible SUp2q representations;
see [KM04b, Lin16, Zen17, Zen18, BS18b, LPCZ21, BS21, SZ21, XZ21].

In this paper, we provide some sufficient conditions for SUp2q-abundant knots.

Theorem 1.3. A nontrivial knot K is SUp2q-abundant unless all following conditions hold.
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(1) There exists k P N` and integers nk ą nk´1 ą ¨ ¨ ¨ ą n1 ą n0 “ 0 so that

∆Kptq “ p´1qk `
kÿ

j“1

p´1qk´jptnj ` t´nj q.

(2) The Seifert genus satisfies gpKq “ nk “ nk´1 ` 1.
(3) K is a prime knot, i.e., it is not a connected sum of two knots.

Remark 1.4. By term (1) and term (2) in Theorem 1.3, we have

(1.2) detpKq “ |∆Kp´1q| ď 2k ` 1 ď 2gpKq ` 1.

Remark 1.5. In [BS19, Theorem 1.5] and [BS20a, Corollary 1.7, and Proposition 5.4], Baldwin and
Sivek proved that a nontrivial knotK is SUp2q-abundant unless K is both fibred and strongly quasi-
positive (up to mirror), the 4-ball genus g4pKq equals to gpKq, and the slope r with no irreducible
SUp2q satisfies |r| ě 2gpKq ´ 1. It is worth mentioning that by techniques developed in this paper,
it is possible to provide alternative proofs of those results.

From classification results in [OS05b, BM18, LV21], we have the following corollary.

Corollary 1.6. The following knots are SUp2q-abundant.

(1) Hyperbolic alternating knots, i.e., alternating knots that are not torus knots T p2, 2n` 1q.
(2) Montesinos knots (including all pretzel knots), except torus knots T p2, 2n ` 1q, pretzel knots

P p´2, 3, 2n` 1q for n P N` and their mirrors.
(3) Knots that are closures of 3-braids, except twisted torus knots Kp3, q; 2, pq with pq ą 0 and their

mirrors, where Kp3, q; 2, pq is the closure of a 3-braid made up of a p3, qq torus braid with p full
twist(s) on two adjacent strands.

The proof of Theorem 1.3 is based on instanton knot homology KHIpY,Kq [KM10b] and framed
instanton homology I7pY q [KM11], which are vector spaces over C for a knot K in a closed 3-
manifold Y . There relative Z2-gradings on KHIpY,Kq and I7pY q and a Seifert surface S of K
induces a Z-grading on KHIpY,Kq [Li19, GL19], which we write as

KHIpY,Kq “
à
iPZ

KHIpY,K, S, iq.

We write p´Y,Kq for the induced knot in the manifold ´Y obtained from Y by reversing the
orientation and call it the mirror of K or pY,Kq. For a knot K in S3, we write K̄ for the mirror of
K, i.e. pS3, K̄q “ p´S3,Kq. We write ´K for the knot with reverse orientation, which is different
from K̄. Then we have canonical isomorphisms

(1.3) KHIp´Y,K, S, iq – HomCpKHIpY,K, S,´iq,Cq and I7p´Y q – HomCpI7pY q,Cq.

Definition 1.7. A rational homology sphere Y is called an instanton L-space if dimC I
7pY q “

|H1pY ;Zq|. A knotK in an instanton L-space Y is called an instanton L-space knot if a nontrivial
surgery on it also gives an instanton L-space. We call K a positive instanton L-space knot if
a positive surgery on it also gives an instanton L-space.

Remark 1.8. It follows directly from (1.3) that Y is an instanton L-space if and only if ´Y is an
instanton L-space. Since S3

r pK̄q “ ´S3
´rpKq, a positive surgery on K giving an instanton L-space

if and only if a negative surgery on K̄ giving an instanton L-space. By [SZ20, Theorem 1.1] and
[BS19, Corollary 4.8], if K Ă S3 is not SUp2q-abundant, then K is an instanton L-space knot. By
[BS18b, Theorem 1.5] and passing to the mirror if necessary, we can further assume that for any
sufficiently large integer n, the manifold S3

npKq is an instanton L-space.
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The following theorem is the main theorem of this paper.

Theorem 1.9. If K Ă S3 is an instanton L-space knot, then K is a prime knot and there exists
k P N and integers

nk ą nk´1 ą ¨ ¨ ¨ ą n1 ą n0 “ 0 ą n´1 ą ¨ ¨ ¨ ą n1´k ą n´k with n´j “ ´nj

so that

dimCKHIpS3,K, S, iq “

#
1 if i “ nj for j P r´k, ks,

0 else,

where the Z2-gradings of the generators of KHIpS3,K, S, njq – C are alternating.

We prove Theorem 1.3 by Theorem 1.9.

Proof of Theorem 1.3. By Remark 1.8, if K Ă S3 is not SUp2q-abundant, then K is an instanton
L-space knot. Then Theorem 1.9 applies to K and we obtain term (3). Since the space in the top
Z-grading of KHIpS3,Kq is one-dimensional, it follows from [KM10b, Section 7] that K is fibred.
Then by [BS18a, Theorem 1.7], we know that dimCKHIpS3,K, S, gpKq ´ 1q ě 1, and Theorem 1.9
forces the equality holds. Thus, term (1) and term (2) follow from

ÿ

iPZ

χpKHIpS3,K, S, iqq ¨ ti “ ˘∆Kptq

[Lim09, KM10a], where the sign ambiguity is due to the relative Z2-grading. �

Theorem 1.9 is an instanton analog of [OS05b, Theorem 1.2] in Heegaard Floer theory due to
Ozsváth and Szabó. The key step to prove Theorem 1.9 is to establish an instanton version of the
large surgery formula in Heegaard Floer theory. We will explain more details about this strategy
in Subsection 1.1. Here we state more applications of techniques developed in this paper.

First, we can compare instanton knot homology of a instanton L-space knot K Ă Y to the

knot Floer homology {HFKpY,Kq introduced in [OS04a, Ras03], which verifies more examples of
[KM10b, Conjecture 7.24]. The main inputs are a generalization of Theorem 1.9, results about
Heegaard Floer theory from [OS05b, RR17], and the equation of graded Euler characteristics from
[LY20]

(1.4) χgrpKHIpY,Kqq “ χgrp {HFKpY,Kqq P ZrHs{ ˘H,

where H “ H1pY pKq;Zq{Tors.

Definition 1.10 ([OS04b, OS05b]). A rational homology sphere Y is called an (Heegaard Floer)

L-space if dimF2

yHF pY q “ |H1pY ;Zq|. A knot K in an L-space Y is called an (Heegaard Floer)
L-space knot if a nontrivial surgery on it also gives an L-space.

Theorem 1.11. Suppose K Ă Y is a knot with H1pY pKq;Zq – Z and suppose the meridian of
K represents q times the generator of H1pBY pKq;Zq. Suppose K is both an L-space knot and an
instanton L-space knot so that Yu{vpKq is an instanton L-space. If gcdpq, vq “ 1, then we have

(1.5) dimCKHIpY,Kq “ dimF2

{HFKpY,Kq.

Moreover, when fixing the gradings associated to the Seifert surface S of K properly, we have

(1.6) dimCKHIpY,K, S, iq “ dimF2

{HFKpY,K, S, iq ď 1 for any i P Z.
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Remark 1.12. When H1pY pKq;Zq has torsion, we can still decompose KHIpY,Kq along elements
in H1pY pKq;Zq as in [LY21a]. However, since this decomposition is not canonical and adapting
the proofs to this case is subtle, we leave the discussion in this case to the future. That is why we
assume H1pY pKq;Zq – Z and gcdpq, vq “ 1.

Remark 1.13. From [LPCS20, BS20a], for a knot K Ă S3 that is both an L-space knot and an

instanton L-space knot, we have dimC I
7pS3

r pKqq “ dimF2

yHF pS3
r pKqq for any r P Q.

From [ABDS20, Corollary 1.3], a Seifert fibred space is an L-space if and only if it is an in-
stanton L-space. In particular, closed 3-manifolds with elliptic geometry are both L-spaces and
instanton L-spaces [OS05b, Proposition 2.3] (or equivalently, with finite fundamental group by the
Geometrization theorem; see [KL08]). In particular, S3, the Poincaré sphere Σp2, 3, 5q, and all lens
spaces Lpp, qq are both L-spaces and instanton L-spaces. From [OS05c, Sca15], double-branched
covers of Khovanov-thin knots (in particular, all quasi-alternating knots) are also both L-spaces
and instanton L-spaces. Note that when Y is an integral homology sphere in Theorem 1.11, then
we have q “ 1 and hence gcdpq, vq “ 1 for any v. Thus, we have the following corollary.

Corollary 1.14. Suppose K is a knot in Y “ S3 or the Poincaré sphere Σp2, 3, 5q. If there is some
r P Qzt0u so that YrpKq is a Seifert fibred L-space or a double-branched cover of Khovanov-thin
knot. Then (1.5) and (1.6) hold.

Remark 1.15. There are many examples of knots in S3 and Σp2, 3, 5q that admit lens space surgeries,
such as Berge’s knots [Ber18] in S3, Tange’s knots [Tan09, Theorem 4.1] in Σp2, 3, 5q, Hedden’s knots
[Hed11] in Σp2, 3, 5q dual to TR and TL in lens spaces (see also [Ras07, Bak14, BH20]), Baker’s tunnel
number two knots [BH20] in Σp2, 3, 5q. There are also other twist families of knots admiting Seifert
fibred L-space surgeries [Mot16, BM19].

Second, we can relate the knot in the following definition to the framed instanton homology of
large surgeries on it. The main input is the large surgery formula introduced in Subsection 1.1. The
analog in Heegaard Floer theory was proved in [RR17, Section 3].

Definition 1.16. A knot K in an instanton L-space Y is called an instanton Floer simple knot
if dimCKHIpY,Kq “ dimC I

7pY q “ |H1pY ;Zq|.

Theorem 1.17. Suppose K Ă Y is a knot with H1pY pKq;Zq – Z. Suppose the basis of H1pBY pKq;Zq
is induced by the meridian of K. Then K is an instanton Floer simple knot if and only if for any
r P Q with |r| sufficiently large, the manifold YrpKq is an instanton L-space.

Remark 1.18. In [LY20, Theorem 1.8], we proved Theorem 1.17 for simple knots in lens spaces
without assuming H1pY pKq;Zq – Z. The technique there is different from the ones in this paper.

Remark 1.19. From [BS19, Theorem 1.5], we know that if K Ă S3 is a positive instanton L-space
knot, then S3

r pKq is an instanton L-space if and only if r ě 2gpKq´1. Hence we can apply Theorem
1.17 to the dual knot Kr Ă S3

r pKq of a Berge knot K with r ě 2gpKq ´ 1 to obtain that Kr is an
instanton Floer simple knot.

Third, we can make some calculations for manifolds obtained from surgeries on genus-one knots.
If K Ă S3 with gpKq “ 1, we can use the large surgery formula introduced in Subsection 1.1
to compute I7pS3

r pKqq when |r| sufficiently large (indeed |r| ě 2gpKq ` 1 “ 3 is large enough).
Furthermore, we can compute I7pS3

r pKqq for any slope r by the concordance invariant ν7pKq defined
by Baldwin and Sivek [BS20a]. In particular, we have the following theorem.
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Theorem 1.20. Suppose K is a genus-one alternating knot. Then for any r P Qzt0u, we have

dimC I
7pS3

r pKqq “ dimF2

yHF pS3
r pKqq.

Remark 1.21. For genus-one Khovanov-thin knots (in particular, genus-one quasi-alternating knots
[KM11, Corollary 1.6]), we can also fix the value dimC I

7pS3
r pKqq up to the mirror of K; see Section

6 for more details.

1.1. A large surgery formula in instanton theory.
In this subsection, we sketch the idea of the proof of Theorem 1.9 and introduce a large surgery

formula relates KHIpS3,Kq and I7pS3
npKqq for any integer n satisfies |n| ě 2gpKq ` 1. By Remark

1.8, we may assume S3
npKq is an instanton L-space for any sufficiently large integer n. However,

to apply the proof of [OS05b, Theorem 1.2], we need to recover (at least partially) the following
structures in instanton theory.

Fact. Suppose K is a knot in S3 and n P N`. We have the following structures in Heegaard Floer
theory [OS04b, OS04a, Ras03].

(1) The decomposition of yHF pS3
npKqq associated to SpincpS3

npKqq – Zn:

yHF pS3
npKqq “

à

rssPZn

yHF pS3
npKq, rssq.

(2) The filtration on the Heegaard Floer chain complex yCF pS3q associated to K, which induces a

spectral sequence from {HFKpS3,Kq to yHF pS3q.

(3) The large surgery formula computing yHF pSnpKq, rssq for any large integer n and rss P Zn from
the filtrations associated to K and ´K.

(4) The differential D on the doubly-graded Heegaard Floer chain complex CFK8pS3,Kq, in
particular the fact that D2 “ 0.

Since we will use bypass maps based on contact geometry throughout the paper, it is more
convenient to use manifolds with reverse orientations. For technical reasons, we replace the notation
KHI with KHI. The constructions below can be generalized to a rationally null-homologous knot
in a closed 3-manifold. For simplicity, we only discuss the constructions for a knot K in an integral
homology sphere Y and deal with the general case in the main body of the paper. Suppose S is a
Seifert surface of K.

The analogy of term (1) can be found in [LY20, Section 4]. We write the decompostion as

I7p´Y´npKqq “
à

rssPZn

I7p´Y´npKq, rssq.

Since there is no explicit construction of the chain complex of KHIpY,Kq, it is hard to construct
the filtration directly. Fortunately, it is possible to recover the spectral sequence and then lift the
spectral sequence to a filtered chain complex by algebraic construction. For the analog of term (2),
we construct two spectral sequences from KHIp´Y,Kq to I7p´Y q by two types of bypass maps, and
construct two filtered differentials d` and d´ on KHIp´Y,Kq with

HpKHIp´Y,Kq, d`q – HpKHIp´Y,Kq, d´q – I7p´Y q.

For the analog of term (3), we need to introduce the bent complex (c.f. Construction 3.21 and
Construction 3.30) as follows.

For any integer s, the bent complex and the dual bent complex are the chain complexes

As “ Asp´Y,Kq :“ pKHIp´Y,Kq, dsq and A_
s “ A_

s p´Y,Kq :“ pKHIp´Y,Kq, d_
s q,
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respectively, where for any element x P KHIp´Y,K, S, kq,

dspxq “

$
’&
’%

d`pxq k ą 0,

d`pxq ` d´pxq k “ 0,

d´pxq k ă 0,

and d_
s pxq “

$
’&
’%

d´pxq k ą 0,

d`pxq ` d´pxq k “ 0,

d`pxq k ă 0.

Since d` ˝ d` “ d´ ˝ d´ “ 0, we have ds ˝ ds “ d_
s ˝ d_

s “ 0. Hence we can consider the homologies
HpAsq and HpA_

s q. The proof of following theorem is purely algebraic. The main ingredient is the
octahedral axiom (TR4) for a triangulated category.

Theorem 1.22 (Large surgery formula). For a fixed integer n satisfying |n| ě 2gpKq ` 1, suppose

smin “ ´|n| ` 1 ` gpKq and smax “ |n| ´ 1 ´ gpKq.

For any integer s1, suppose rs1s is the image of s1 in Z|n|. For any integer s P rsmin, smaxs, we have

I7p´Y´npKq, rs´ sminsq –

#
HpA´sq if n ą 0,

HpA_
´sq if n ă 0.

We do not know how to construct the analog of the term (4). However, the proof of [OS05b,
Theorem 1.2] only uses the fact that D2 “ 0 on some subcomplexes of CFK8pS3,Kq. Thus, to
obtain a proof of Theorem 1.9, we only need some weaker vanishing results. Since the precise
statement is too technical, we only state some byproducts in the next subsection, which are of
independent interest for contact geometry.

1.2. Instanton contact element and Giroux torsion.
For a contact 3-manifold pN, ξq with convex boundary and dividing set Γ on BN , Baldwin

and Sivek [BS16] constructed an instanton contact elemen θpN,Γ, ξq that lives in a version of
sutured instanton homology SHIp´N,´Γq [BS15]. Suppose pY, ξ1q is a closed contact 3-manifold
and suppose pY p1q, δ, ξ1|Y p1qq is obtained from pY, ξ1q by removing a 3-ball. Then Baldwin and Sivek
defined

θpY, ξ1q :“ θpY p1q, δ, ξ1|Y p1qq P SHIp´Y p1q,´δq “ I7pY q.

We have the following theorems for the instanton contact element.

Theorem 1.23. Suppose pN, ξq is a contact 3-manifold with convex boundary and dividing set Γ
on BN . Suppose S is an admissible surface (c.f. Definition 3.2) in pN,Γq and suppose S` and S´

are positive region and negative region of S with respect to ξ, respectively. We write the Z-grading
associated to S as

SHIp´N,´Γq “
à
iPZ

SHIp´N,´Γ, S, iq.

Then the instanton contact element θpN,Γ, ξq lives in

SHIp´N,´Γ, S,
χpS`q ´ χpS´q

2
q.

Definition 1.24. A contact closed 3-manifold pY, ξq has Giroux torsion if there is an embedding
of pT 2 ˆ r0, 1s, η2πq into pY, ξq, where px, y, tq are coordinates on T 2 ˆ r0, 1s – R2{Z2 ˆ r0, 1s and

η2π “ Kerpcosp2πtqdx ´ sinp2πtqdyq.

Theorem 1.25. If a closed contact 3-manifold pY, ξq has Giroux torsion, then its instanton contact
element θpY, ξq P I7p´Y q vanishes.
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Remark 1.26. There is a contact element in Heegaard Floer theory, constructed by Ozsváth and
Szabó [OS05a] for closed contact 3-manifolds, and extended by Honda, Kazez, and Matić [HKM09]
for contact 3-manifolds with convex boundary. The analog of Theorem 1.23 in Heegaard Floer
theory holds by definition of the contact element. The analog of Theorem 1.25 in Heegaard Floer
theory was first conjectured by Ghiggini [Ghi06, Conjecture 8.3], and then proved by Ghiggini,
Honda, and Van Horn-Morris [GHVHM08]. More proofs can be found in [Mas12, Mat13].

Organization. The paper is organized as follows. In Section 2, we collect some algebraic results
about spectral sequences and the triangulated category, which are used in the proof of the large
surgery formula. In Section 3, we constructed differentials d` and d´ on KHIpY,Kq for a rationally
null-homologous knot K in a closed 3-manifold Y and prove a generalization of Theorem 1.22. In
Section 4, we prove some vanishing results about contact elements and cobordism maps associated
to contact structures. In particular, we prove Theorem 1.23 and Theorem 1.25. In Section 5, we use
results in former sections to prove a generalization of Theorem 1.3. Moreover, we prove Theorem
1.11 and Theorem 1.17. In Section 6, we study surgeries on genus-one knots in S3 and prove
Theorem 1.20. In Section 7, we provide examples of SUp2q-abundant knots and prove Corollary 1.6.
In Section 8, we discuss some further directions of techniques introduced in this paper and make
some conjectures.

Convention. If it is not mentioned, all manifolds are smooth, oriented, and connected. All contact
structures are oriented and positively co-oriented. Homology groups and cohomology groups are
with Z coefficients. We write Zn for Z{nZ and F2 for the field with two elements.

A knot K Ă Y is called null-homologous if it represents the trivial homology class in H1pY ;Zq,
while it is called rationally null-homologous if it represents the trivial homology class inH1pY ;Qq.

For any compact 3-manifold M , we write ´M for the manifold obtained from M by reversing
the orientation. For any surface S in a compact 3-manifold M and any suture γ Ă BM , we write S
and γ for the same surface and suture in ´M , without reversing their orientations. For a knot K
in a 3-manifold Y , we write p´Y,Kq for the induced knot in ´Y with induced orientation, called
the mirror knot of K. The corresponding balanced sutured manifold is p´Y pKq,´γKq.

Acknowledgement. The authors would like to thank John A. Baldwin, Paolo Ghiggini, Ko Honda,
Wenyuan Li, Ciprian Manolescu, Linsheng Wang, and Yi Xie for valuable discussions. The authors
are grateful to Ian Zemke for pointing out the proof of Proposition 4.14. The second author would
like to thank his supervisor Jacob Rasmussen for patient guidance and helpful comments and thank
his parents for support and constant encouragement. The second author is also grateful to Yi Liu
for inviting him to BICMR, Peking University.

2. Algebraic preliminaries

In this section, we collect some algebraic results from homological algebra. All vector spaces are
finite-dimensional and over a fixed field.

2.1. Unrolled exact couples.
In this subsection, we explain the construction of the spectral sequence from an unrolled exact

couple [Boa99] and describe the relationship between the spectral sequence and the filtered chain
complex.
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Definition 2.1. An unrolled exact couple pEs, Asq is a diagram of graded vector spaces and
homomorphisms of the form

¨ ¨ ¨ // As`2 i // As`1 i //

j

{{①①
①①
①①
①①
①

As
i //

j

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

As´1

j

{{①①
①①
①①
①①
①

// ¨ ¨ ¨

¨ ¨ ¨ Es`1

k

cc❋❋❋❋❋❋❋❋❋

Es

k

aa❉❉❉❉❉❉❉❉❉
Es´1

k

aa❉❉❉❉❉❉❉❉

¨ ¨ ¨

in which each triangle

¨ ¨ ¨ Ñ As`1 Ñ As Ñ Es Ñ As`1 Ñ ¨ ¨ ¨

is a long exact sequence. An unrolled exact couple is called bounded by an interval rs1, s2s if
Es “ 0 for s R rs1, s2s. A morphism between two unrolled exact couples pEs, Asq and pĒs, Āsq
consists of maps f s : Es Ñ Ēs and gs : As Ñ Ās that make all square commute.

Suppose pEs, Asq is an unrolled exact couple. For any integers s and r, define

Kerr As “ Kerpiprq : As Ñ As´rq and Imr As “ Impiprq : As`r Ñ Asq,

where iprq denotes the r-fold iterate of i. There are subgroups of Es:

0 “ Bs1 Ă Bs2 Ă ¨ ¨ ¨ Ă Im j “ Ker k Ă ¨ ¨ ¨ Ă Zs2 Ă Zs1 “ Es,

where

Bsr “ jpKerr´1Asq and Zsr “ k´1pImr´1As`1q.

We call Bsr and Z
s
r the r-th boundary subgroup and the r-th cycle subgroup of Es, respectively.

We call the quotient

Esr “ Zsr{Bsr

the s-component of the r-th page. Note that Es1 “ Es. If the unrolled exact couple is bounded by
rs1, s2s, then we call the direct sum

Er “
s2à
s1

Esr

the r-th page.

Remark 2.2. If the unrolled exact couple pEs, Asq is bounded by rs1, s2s, then for any integers
r1, r2 ą s2 ´ s1 and any integer s, we have

Bsr1 “ Bsr2 , Z
s
r1

“ Zsr2 , E
s
r1

“ Esr2 “ Es8, and Er1 “ Er2 “ E8.

Proposition 2.3 ([Boa99, Section 0]). Suppose pEs, Asq is an unrolled exact couple. For any
integers s and r, there exists a well-defined map

dsr : E
s
r Ñ Es`r

r

induced by j ˝ pipr´1qq´1 ˝ k such that

ds`r
r ˝ dsr “ 0 and Ker dsr{ Imds´r

r – Esr`1.

Equivalently, the set tpEsr , d
s
rqurě1 forms a spectral sequence. Moreover, a morphism between two

unrolled exact couples induces a map between the corresponding spectral sequences.

Boardman studied the convergence of the spectral sequence in Proposition 2.3 carefully, while
we only need the special case for bounded unrolled exact couples.
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Theorem 2.4 ([Boa99, Theorem 6.1]). Suppose pEs, Asq is an unrolled exact couple bounded by
rs1, s2s. Then by exactness we have

As1 – As1´1 – As1´2 – ¨ ¨ ¨ and As2`1 – As2`2 – As2`3 – ¨ ¨ ¨

Consider the spectral sequence tpEr , drqurě1 from Proposition 2.3, where we omit the superscript s
to denote the direct sum of all s-components. Then we have the following results.

(1) If As1 “ 0, then tpEr, drqurě1 converges to G “ As2`1 with filtration F sG “ Kers2`1´sAs2`1

and we have F sG{F s`1G – Es8.
(2) If As2`1 “ 0, then tpEr, drqurě1 converges to G “ As1 with filtration F sG “ Ims´s1 As1 and

we have F sG{F s`1G – Es8.

Remark 2.5. The results in [LY20, Section 4.5] are special cases of Proposition 2.3 and Theorem
2.4, where we provided explicits proof by diagram chasing.

It is well-known that a filtered chain complex can induce a spectral sequence. Conversely, we
may construct a filtered chain complex from a spectral sequence. However, a priori we may lose
information when passing a filtered chain complex to a spectral sequence, so the reverse procedure
is not always canonical. When fixing an inner product on the first page or equivalently fixing a
basis, we have the following canonical construction.

Construction 2.6. Suppose pEs, Asq is an unrolled exact couple bounded by rs1, s2s and suppose
tpEr, drqurě1 is the spectral sequence from Proposition 2.3. Fix an inner product on Es1 “ Es for
all integers s. For simplicity, we omit the superscript s and consider the direct sum E of all Es.

For any subgroup X of E, there is a canonical isomorphism E{X – XK, where XK is the
orthogonal complement of X under the fixed inner product. From Definition 2.1 and Remark 2.2,
there are subgroups of E:

0 “ B1 Ă B2 Ă ¨ ¨ ¨Bs2´s1`1 Ă Zs2´s1`1 Ă ¨ ¨ ¨ Ă Z2 Ă Z1 “ E.

For p “ 1, . . . , s2 ´ s1, define B
1
r as the orthogonal complement of Bp in Bp`1, define Z

1
p as the

orthogonal complement of Zp`1 in Zp, and define E1
8 as the orthogonal complement of B1

s2´s1`1

in Z 1
s2´s1`1. Then we have

Er “ Zr{Br –
s2´s1à
p“r

pB1
p ‘ Z 1

pq ‘ E1
8,

Kerdr “ Zr`1{Br –
s2´s1à
p“r`1

pB1
p ‘ Z 1

pq ‘ E1
8 ‘B1

r,

Im dr “ Br`1{Br – B1
r

Hence we can lift dr : Er Ñ Er to a map

d1
r “ I ˝ dr ˝ P : E Ñ E,

where P and I are the projection and the inclusion, respectively. The only nontrivial part of d1
r is

from Z 1
r to B1

r, so for any r1, r2 P t1, . . . , s2 ´ s1u, we have d1
r1

˝ d1
r2

“ 0. Hence the summation

d “
s2´s1ÿ

r“1

d1
r

is a differential on E, i.e. d2 “ 0. Moroever, we have

HpE, dq – E1
8 – Es2´s1`1 – E8.
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It is straightforward to check that the filtration F sE “
À

pěsE
p on pE, dq induces the spectral

sequence tpEr, drqurě1.

2.2. The octahedral axiom.
It is well-known that the derived category of an abelian category is a triangulated category

(for example, see [Wei94, Proposition 10.2.4]). In particular, the derived category of the category
of vector spaces is triangulated. Graded vector spaces can be regarded as objects in the derived
category with trivial differentials. The following theorem is the special case of the octahedral axiom
(TR4) of the triangulated category.

Theorem 2.7. Suppose X,Y, Z,X 1, Y 1, Z 1 are graded vector spaces satisfying long exact sequences

¨ ¨ ¨ Ñ X
f
ÝÑ Y

h
ÝÑ Z 1 Ñ Xt1u Ñ ¨ ¨ ¨

¨ ¨ ¨ Ñ Y
g

ÝÑ Z Ñ X 1 l
ÝÑ Y t1u Ñ ¨ ¨ ¨

¨ ¨ ¨ Ñ X
g˝f
ÝÝÑ Z Ñ Y 1 Ñ Xt1u Ñ ¨ ¨ ¨

where Xt1u denotes the grading shift of X by 1, so do Y t1u and Zt1u. Then we have the fourth
long exact sequence

¨ ¨ ¨ Ñ Z 1 ψ
ÝÑ Y 1 φ

ÝÑ X 1 l˝ht1u
ÝÝÝÝÑ Z 1t1u Ñ ¨ ¨ ¨

such that the following diagram commutes

Z 1

ψ

��❄
❄❄

❄❄
❄❄

❄
// Xt1u

ft1u

��✹
✹
✹
✹
✹
✹✹

✹
✹
✹
✹
✹✹

✹
✹
✹

Y

g

��❃
❃❃

❃❃
❃❃

❃

@@��������
Y 1

φ

""❉
❉❉

❉❉
❉❉

❉❉
❉❉

❉❉
❉❉

❉❉
❉❉

❉❉
❉

==④④④④④④④④

Z

**❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯

??⑧⑧⑧⑧⑧⑧⑧⑧⑧
Y t1u

ht1u

""❋
❋❋

❋❋
❋❋

❋❋

X

f

BB☎☎☎☎☎☎☎☎☎☎☎☎☎☎☎☎☎☎☎

g˝f

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦
X 1

l˝ht1u //

l

OO

Z 1t1u

where the arrows come from four long exact sequences.

Sketch of the proof. We regard graded vector spaces as chain complexes with trivial differentials.
By the long exact sequences in the assumption, we know that Z 1, X 1, Y 1 are chain homotopic to
mapping cones Conepfq,Conepgq,Conepg ˝ fq, respectively. Define

ψ : Y ‘Xt1u Ñ Z ‘Xt1u

ψpy, xq ÞÑ pgpyq, xq

and
φ : Z ‘Xt1u Ñ Z ‘ Y t1u

φpz, xq ÞÑ pz, ft1upxqq

The map ψ is a chain map from Conepfq to Conepg ˝ fq and the map φ is a chain map from
Conepg ˝ fq to Conepgq. Since the underlying vector space of Conepψq is Z ‘Xt1u ‘ Y t1u ‘Xt2u,
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the inclusion Z ‘ Y t1u Ñ Z ‘ Xt1u ‘ Y t1u ‘ Xt2u induces a map η from Conepgq to Conepψq,
which is a chain map and makes the following diagram commutes

Conepfq
ψ //

“

��

Conepg ˝ fq

“

��

φ // Conepgq
l˝ht1u //

η

��

Conepfqt1u

“

��
Conepfq

ψ // Conepg ˝ fq // Conepψq // Conepfqt1u

Define
ζ : Z ‘Xt1u ‘ Y t1u ‘Xt2u Ñ Z ‘ Y t1u

ζpz, x, y, x1q ÞÑ pz, y ` fpxqq

Then we can check ζ ˝ η is the identity map on Conepgq and η ˝ ζ is chain homotopic to the identity
on Conepψq. Hence Conepfq,Conepg ˝ fq and Conepgq form a long exact sequence. �

3. Differentials and the large surgery formula

In this section, we provide more details for constructions in Subsection 1.1 and prove Theorem
1.22. Most notations follow from [LY20, Section 4].

3.1. Backgrounds on sutured instanton homology.
In this subsection, we review some basic facts of sutured instanton homology.

Definition 3.1 ([Juh06, Definition 2.2]). A balanced sutured manifold pM,γq consists of a
compact 3-manifold M with non-empty boundary together with a closed 1-submanifold γ on BM .
Let Apγq “ r´1, 1s ˆ γ be an annular neighborhood of γ Ă BM and let Rpγq “ BMzintpApγqq, such
that they satisfy the following properties.

(1) Neither M nor Rpγq has a closed component.
(2) If BApγq “ ´BRpγq is oriented in the same way as γ, then we require this orientation of BRpγq

induces the orientation on Rpγq, which is called the canonical orientation.
(3) Let R`pγq be the part of Rpγq for which the canonical orientation coincides with the induced

orientation on BM from M , and let R´pγq “ RpγqzR`pγq. We require that χpR`pγqq “
χpR´pγqq. If γ is clear in the contents, we simply write R˘ “ R˘pγq, respectively.

For any balanced sutured manifold pM,γq, Kronheimer and Mrowka [KM10b, Section 7] con-
structed a C-vector space SHIpM,γq called the sutured instanton homology of pM,γq. The
construction was based on closures of pM,γq, i.e. a tuple pY,R, ωq consists of a closed 3-manifold
Y , a closed surface R Ă Y , and a 1-cycle ω Ă Y with some admissible conditions.

A priori, the space SHIpM,γq only represents an isomorphism class. Later, Baldwin and Sivek
[BS15, Section 9] dealt with the naturality issue and constructed a projectively transitive system
SHIpM,γq (twisted version). This system records the collection of vector spaces associated to
different closures of pM,γq, which are all isomorphic to SHIpM,γq, together with canonical isomor-
phisms relating these spaces, where these isomorphisms are well-defined up to multiplication by a
unit in C.

In practice, when considering maps between sutured instanton homology, we can always fix
closures of corresponding balanced sutured manifolds and consider linear maps between actual
vector spaces, at the cost that equations between maps only hold up to multiplication by a unit.
Hence if it is clear, we will not distinguish the projectively transitive system and the vector space
in the system.
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To be consistent with notations in [LY20], we write SHIpM,γq for the system SHIpM,γq. Note
that SHIpM,γq represents the isomorphism class in [BS15, Section 9], and we write SHIpM,γq for
the isomorphism class instead.

There is another projectively transitive system SHIgpM,γq (untwisted version) constructed in
[BS15, Section 9]. The main difference of two systems is that SHIpM,γq corresponds to closures of
pM,γq for which the surface R may have different genera and SHIgpM,γq corresponds to closures
for which g “ gpRq is fixed. Many arguments for SHIpM,γq also hold for SHIgpM,γq when g

is sufficiently large. In [LY21b], we considered SHIgpM,γq as a special case of formal sutured
homology and calculated its graded Euler characteristic for sufficiently g. By [BS15, Theorem 9],
the subsystem of SHIpM,γq for closures of fixed genus g is isomorphic to SHIgpM,γq, so properties
of SHgpM,γq (especially about graded Euler characteristics) also apply to SHIpM,γq.

Suppose K is a knot in a closed 3-manifold Y . Let

Y p1q :“ Y zB3 and Y pKq :“ Y zintNpKq.

Suppose δ is a simple closed curve on BY pKq – S2 and suppose γK is two copies of the meridian
of K with opposite orientations. Define

I7pY q :“ SHIpY p1q, δq and KHIpY,Kq :“ SHIpY pKq, γKq.

Note that I7pY q also denotes the framed instanton homology of Y constructed in [KM11], though
it is isomorphic to SHIpY p1q, δq. So we abuse notation and do not distinguish these two definitions
in this paper.

Definition 3.2 ([GL19, Definition 2.25]). Suppose pM,γq is a balanced sutured manifold and
S Ă pM,γq is a properly embedded surface in M . The surface S is called an admissible surface
if the following conditions hold.

(1) Every boundary component of S intersects γ transversely and nontrivially.
(2) We require that 1

2 |S X γ| ´ χpSq is an even integer.

For an admissible surface S Ă pM,γq, there is a Z-grading on SHIpM,γq [Li19, GL19]:

SHIpM,γq “
à
iPZ

SHIpM,γ, S, iq.

From the construction of the grading, we have the following basic proposition, which implies (1.3).

Proposition 3.3 ([LY21b, Theorem 2.29]). For any balanced sutured manifold pM,γq and any
admissible surface S Ă pM,γq, there are canonical isomorphisms

SHIp´M,γ, S, iq – HomCpSHIpM,γ, S, iq,Cq

and

SHIpM,γ,´S, iq – SHIpM,´γ, S, iq – SHIpM,γ, S,´iq.

3.2. The caonical basis on the torus boundary.
In this subsection, we provide a canonical way to fix the basis on the boundary of the knot

complement and introduce some notations about sutures.
Suppose Y is a closed 3-manifold and K Ă Y is a null-homologous knot. Let Y pKq be the

knot complement Y zintpNpKqq. Any Seifert surface S of K gives rise to a framing on BY pKq: the
longitude λ can be picked as S X BY pKq with the induced orientation from S, and the meridian µ
can be picked as the meridian of the solid torus NpKq with the orientation so that µ ¨λ “ ´1. The
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‘half lives and half dies’ fact for 3-manifolds implies that the following map has a 1-dimensional
image:

B˚ : H2pY pKq, BY pKq;Qq Ñ H1pBY pKq;Qq.

Hence any two Seifert surfaces lead to the same framing on BY pKq.

Definition 3.4. The framing pµ, λq defined as above is called the canonical framing of pY,Kq.
With respect to this canonical framing, let

pYq{p “ Y pKq Yφ S
1 ˆD2

be the 3-manifold obtained from Y by a q{p surgery along K, i.e.,

φpt1u ˆ BD2q “ qµ ` pλ.

We also write pYα for pYq{p, where α “ φpt1u ˆ BD2q. When the surgery slope is understood, we

also write pYq{p simply as pY . Let pK be the dual knot, i.e., the image of S1 ˆ t0u Ă S1 ˆ D2 in pY
under the gluing map.

Convention. Throughout this section, we will always assume that gcdpp, qq “ 1 and q ą 0 or
pp, qq “ p1, 0q for a Dehn surgery. Especially, the original pair pY,Kq can be thought of as a pair

ppY , pKq obtained from pY,Kq by the 1{0 surgery. Moreover, we will always assume that the knot
complement Y pKq is irreducible. This is because if Y pKq is not irreducible, then Y pKq – Y 1pK 1q7Y 2

for some closed 3-manifold Y 1, Y 2 and a null-homologous knot K 1 Ă Y 1. By the connected sum
formula [Li18a, Section 1.8], we have

SHIpY pKq, γq – SHIpY 1pK 1q, γq b I7pY 2q

for any suture γ. Hence all results hold after tensoring I7pY 2q.

Next, we describe various families of sutures on the knot complement. Suppose K Ă Y is a

null-homologous knot and the pair ppY , pKq is obtained from pY,Kq by a q{p surgery. Note we can

identify the complement of K Ă Y with that of pK Ă pY , i.e. pY p pKq “ Y pKq.
On BY pKq, there are two framings: One comes from K, and we write longitude and meridian

as λ and µ, respectively. The other comes from pK. Note only the meridian µ̂ of pK is well-defined,
and by definition, it is µ̂ “ qµ ` pλ.

Definition 3.5. If p “ 0, then q “ 1 and µ̂ “ µ. We can take λ̂ “ λ. If pq, pq “ p0, 1q, then we

take λ̂ “ ´µ. If p, q ‰ 0, then we take λ̂ “ q0µ ` p0λ, where pq0, p0q is the unique pair of integers
so that the following conditions are true.

(1) 0 ď |p0| ă |p| and p0p ď 0.
(2) 0 ď |q0| ă |q| and q0q ď 0.
(3) p0q ´ pq0 “ 1.

In particular, if pq, pq “ pn, 1q, then λ̂ “ ´µ.
For a homology class xλ ` yµ, let γxλ`yµ be the suture consisting of two disjoint simple closed

curves representing ˘pxλ ` yµq on BY pKq. Furthermore, for n P Z, define

pΓnpq{pq “ γ
λ̂´nµ̂ “ γpp0´npqλ`pq0´nqqµ, and pΓµpq{pq “ γµ̂ “ γpλ`qµ.

Suppose pqn, pnq P t˘pq0 ´ nq, p0 ´ npqu such that qn ě 0.

When emphasizing the choice of µ̂, we also write pΓnpµ̂q and pΓµpµ̂q. When λ̂ and µ̂ are understood,

we omit the slope q{p and simply write pΓn and pΓµ. When pq, pq “ p1, 0q, we write Γn and Γµ instead.
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Remark 3.6. Since the two components of the suture must be given opposite orientations, the
notations γxλ`yµ and γ´xλ´yµ represent the same suture on the knot complement Y pKq. Our
choice makes qn`1 ď qn for n ă ´1 and qn`1 ě qn for n ě 0.

3.3. Bypass maps on the knot complements.
In this subsection, we review results in [LY20, Section 4] that are useful in this paper.
If pM,γq “ pY pKq, γxλ`yµq and S is an admissible surface obtained from a minimal genus Seifert

surface (c.f. [LY20, Definition 4.12], where we write Sτ for τ P t0,´1u), then we can calculate the
maximal and minimal nontrivial gradings explicitly. Note that we assume that Y pKq is irreducible,
so the decomposition of pY pKq, γxλ`yµq along S and ´S are both taut (c.f. [Juh06, Definition 2.6]).
Since we will use contact gluing maps later, it is more convenient to consider p´M,´γq instead of
pM,γq.

Definition 3.7. For any integer y P N, define

iymax “ r
y ´ 1

2
s ` gpKq, and iymin “ r´

y ´ 1

2
s ´ gpKq,

where rxs is the minimal integer larger than x. For µ “ qµ` pλ and the suture pΓn and pΓµ, define
înmax “ iqnmax, î

n
min “ i

qn
min, and î

µ
max “ i

q
min, î

µ
min “ i

q
min.

Lemma 3.8 ([LY20, Lemma 4.14]). Suppose K Ă Y is a null-homologous knot and γxλ`yµ is a
suture on BY pKq with y ě 0. Suppose further that S is a Seifert surface of K. Then the maximal and
minimal nontrivial gradings of SHIp´Y pKq,´γpx,yqq associated to S are iymax and iymin, respectively.

In particular, the maximal and minimal nontrivial gradings of SHIp´Y pKq,´pΓnq associated to S

are înmax and înmin, respectively.

It is easy to see that

lim
nÑ`8

p̂inmax ´ înminq “ lim
nÑ`8

p2gpKq ` nq ´ q0 ´ 1q “ `8.

However, by following lemmas, there is no more information in SHIp´Y pKq,´pΓnq when n is large.
To see this, we first introduce the bypass exact triangles.

Definition 3.9. Suppose pM,γq is a balanced sutured manifold and S is an admissible surface in
pM,γq. For any i, j P Z, define

SHIpM,γ, S, iqrjs “ SHIpM,γ, S, i´ jq.

Moreover, let SHIpM,γ, S, iqt1u be obtained from SHIpM,γ, S, iq by switch the odd and the even
relative Z2-gradings.

Proposition 3.10 ([LY20, Proposition 4.15], see also [Li19, Proposition 5.5]). Suppose K Ă Y is a

null-homologous knot and suppose the pair ppY , pKq is obtained from pY,Kq by a q{p surgery. Suppose

further that the sutures pΓn and pΓµ are defined as in Definition 3.5 and S is a Seifert surface of K.
Then the following conditions hold, where all maps are grading preserving.

(1) For n P Z so that qn`1 “ qn ` q, i.e., n ě 0, there are two bypass exact triangles:

SHIp´Y pKq,´pΓn, Sqr̂in`1
min ´ înmins

ψn
`,n`1 // SHIp´Y pKq,´pΓn`1, Sq

ψ
n`1

`,µss❢❢❢❢❢
❢❢❢❢

❢❢❢❢
❢❢❢❢

❢❢❢❢
❢

SHIp´Y pKq,´pΓµ, Sqr̂in`1
max ´ îµmaxs

ψ
µ

`,n

OO
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and

SHIp´Y pKq,´pΓn, Sqr̂in`1
max ´ înmaxs

ψn
´,n`1 // SHIp´Y pKq,´pΓn`1, Sq

ψ
n`1

´,µss❢❢❢❢❢
❢❢❢❢

❢❢❢❢
❢❢❢❢

❢❢❢❢
❢

SHIp´Y pKq,´pΓµ, Sqr̂in`1
min ´ î

µ
mins

ψ
µ
´,n

OO

(2) For n P Z so that qn`1 “ qn ´ q, i.e., n ă ´1, there are two bypass exact triangles:

SHIp´Y pKq,´pΓn, Sq
ψn

`,n`1 // SHIp´Y pKq,´pΓn`1, Sqr̂inmax ´ în`1
maxs

ψ
n`1

`,µrr❡❡❡❡❡❡
❡❡❡❡❡

❡❡❡❡❡
❡❡❡❡❡

❡❡❡❡

SHIp´Y pKq,´pΓµ, Sqr̂inmin ´ î
µ
mins

ψ
µ
`,n

OO

and

(3.1) SHIp´Y pKq,´pΓn, Sq
ψn

´,n`1 // SHIp´Y pKq,´pΓn`1, Sqr̂inmin ´ în`1
mins

ψ
n`1

´,µrr❡❡❡❡❡❡
❡❡❡❡❡

❡❡❡❡❡
❡❡❡❡❡

❡❡❡❡

SHIp´Y pKq,´pΓµ, Sqr̂inmax ´ îµmaxs

ψ
µ
´,n

OO

(3) For n P Z so that qn`1 ` qn “ q, i.e., n “ ´1, there are two bypass exact triangles:

(3.2) SHIp´Y pKq,´pΓn, Sqr̂iµmin ´ înmins
ψn

`,n`1 // SHIp´Y pKq,´pΓn`1, Sqr̂iµmax ´ în`1
maxs

ψ
n`1

`,µrr❡❡❡❡❡❡
❡❡❡❡❡

❡❡❡❡❡
❡❡❡❡❡

❡❡❡❡❡

SHIp´Y pKq,´pΓµ, Sq

ψ
µ

`,n

OO

and

(3.3) SHIp´Y pKq,´pΓn, Sqr̂iµmax ´ înmaxs
ψn

´,n`1 // SHIp´Y pKq,´pΓn`1, Sqr̂iµmin ´ în`1
mins

ψ
n`1

´,µrr❡❡❡❡❡❡
❡❡❡❡❡

❡❡❡❡❡
❡❡❡❡❡

❡❡❡❡❡

SHIp´Y pKq,´pΓµ, Sq

ψ
µ
´,n

OO

Remark 3.11. The maps ψ˚
`,˚ and ψ˚

´,˚ are called bypass maps, which are contact gluing maps
induced by bypass attachments on balanced sutured manifolds. The exact triangles in Proposition
3.10 are called bypass exact triangles. In this paper, we will omit the definitions and focus on
their algebraic properties.
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Lemma 3.12 ([LY20, Lemma 4.37]). For any surgery slope q{p, consider the bypass maps ψ˚
`,˚

and ψ˚
´,˚ in Proposition 3.10. For any n P Z, we have two commutative diagrams

(3.4) SHIp´Y pKq,´pΓnq

ψn
`,µ ))❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘❘

❘

ψn
´,n`1 // SHIp´Y pKq,´pΓn`1q

ψ
n`1

`,µuu❦❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦❦

SHIp´ pY pKq,´pΓµq

and

(3.5) SHIp´Y pKq,´pΓnq
ψn

´,n`1 // SHIp´Y pKq,´pΓn`1q

SHIp´ pY pKq,´pΓµq

ψ
µ
`,n

ii❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘ ψ
µ
`,n`1

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦

The similar commutative diagrams hold if we switch the roles of ψ˚
`,˚ and ψ˚

´,˚.

In the following lemma, we abuse the notations for bypass maps so they also denote the restric-
tions on some gradings associated to S.

Lemma 3.13 ([LY20, Lemma 4.18]). For any n P N, the map

ψn`,n`1 : SHIp´Y pKq,´pΓn, S, iq Ñ SHIp´Y pKq,´pΓn`1, S, i´ înmin ` în`1
minq

is an isomorphism if i ď înmax ´ 2gpKq. Similarly, the map

ψn´,n`1 : SHIp´Y pKq,´pΓn, S, iq Ñ SHIp´Y pKq,´pΓn`1, S, i´ înmax ` în`1
maxq

is an isomorphism if i ě înmin ` 2gpKq.

Lemma 3.14 ([LY20, Lemma 4.22]). Suppose n P N satisfies qn ě q ` 2gpKq, and suppose i, j P Z

with

înmin ` 2gpKq ď i, j ď înmax ´ 2gpKq, and i´ j “ q.

Then we have

SHIp´Y pKq,´pΓn, S, iq – SHIp´Y pKq,´pΓn, S, jq.

Thus, we can divide SHIp´Y pKq,´pΓnq into three parts: the top 2gpKq gradings, the middle
gradings, and the bottom 2gpKq gradings. All parts stabilize by Lemma 3.13 and the spaces in
the middle gradings are cyclic by Lemma 3.14. Moreover, by Proposition 3.3, we have a canonical
isomorphism

SHIp´M,γ, S, iq – SHIp´M,´γ, S,´iq.

If BM – T 2, we can identify ´γ with γ, which induces an involution

(3.6) ιγ : SHIp´M,´γ, S, iq ÝÑ SHIp´M,γ, S, iq
–
ÝÑ SHIp´M,´γ, S,´iq.

Hence the spaces in the top 2gpKq gradings and the bottom 2gpKq gradings are isomorphic. The

following theorems imply that spaces in the middle gradings encode information of I7p´ pY q.
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Lemma 3.15 ([LY20, Lemma 4.11], see also [GLW19, Section 3]). Suppose K Ă Y is a null-

homologous knot and suppose the pair ppY , pKq is obtained from pY,Kq by a q{p surgery. Suppose

further that the sutures pΓn are defined as in Definition 3.5. Then, there is an exact triangle

(3.7) SHIp´Y pKq,´pΓnq // SHIp´Y pKq,´pΓn`1q

Fn`1ww♥♥♥
♥♥
♥♥
♥♥
♥♥
♥♥

I7p´ pY q

Gn

gg❖❖❖❖❖❖❖❖❖❖❖❖

where Fn is the contact gluing maps associated to the contact 2-handle attachment along µ̂ “
qµ`pλ Ă BY pKq. Furthermore, we have four commutative diagrams related to ψn`,n`1 and ψn´,n`1,
respectively

SHIp´Y pKq,´pΓnq
ψn

˘,n`1 // SHIp´Y pKq,´pΓn`1q

I7p´ pY q

Gn

gg❖❖❖❖❖❖❖❖❖❖❖❖ Gn`1

77♥♥♥♥♥♥♥♥♥♥♥♥♥

and

SHIp´Y pKq,´pΓnq

Fn ''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

ψn
˘,n`1 // SHIp´Y pKq,´pΓn`1q

Fn`1ww♥♥♥
♥♥
♥♥
♥♥
♥♥
♥♥

I7p´ pY q

Theorem 3.16 ([LY20, Proposition 4.28]). Suppose n P N satisfies qn ě q ` 2gpKq. Then there
exists an isomorphism

F 1
n :

q´1à
i“0

SHIp´Y pKq,´pΓn, S, înmax ´ 2gpKq ´ iq
–

ÝÑ I7p´ pY q,

where F 1
n is the restriction of Fn in Lemma 3.15.

Definition 3.17. For a fixed integer q ą 0 and any integer s P r0, q ´ 1s, suppose rss is the image
of s in Zq. Define

I7p´ pY , rssq :“ F 1
npSHIp´Y pKq,´pΓn, S, înmax ´ 2gpKq ´ sqq Ă I7p´ pY q.

It is well-defined by isomorphisms in Lemma 3.13 and commutative diagrams in Lemma 3.15.

Proposition 3.18 ([LY21b, Corollary 1.20]). Suppose K is a knot in an integral homology sphere
Y and suppose n is an integer. Then ´Y´npKq is an instanton L-space if and only if for any
rss P Z|n|, we have

dimC I
7p´Y´npKq, rssq “ 1.

Remark 3.19. Proposition 3.18 also follows from the special case pM,γq “ pY p1q, δq in [LY21a,
Theorem 1.1]:

χenpI7pY qq “ χpyHF pY qq “
ÿ

hPH1pY

h P ZrH1pY qs{ ˘H1pY q,

where Y is any rational homology sphere.
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3.4. Two spectral sequences.

In this subsection, we construct spectral sequences from KHIp´ pY , pKq to I7p´ pY q by bypass exact
triangles in Proposition 3.10.

For a fixed integer q ą 0, any fixed large integer n, and any integer i, we have the following
diagram of exact triangles
(3.8)

¨ ¨ ¨ pΓi,`n`1
oo

ψ
n`1

`,µ !!❇
❇❇

❇❇
❇❇

❇
pΓi,`n

ψn
`,n`1oo

ψn
`,µ   ❅

❅❅
❅❅

❅❅
❅❅

pΓi,`n´1

ψ
n´1

`,noo

ψ
n´1

`,µ !!❇
❇❇

❇❇
❇❇

❇
pΓi,`n´2

ψ
n´2

`,n´1oo ¨ ¨ ¨oo

¨ ¨ ¨ pΓi´qµ

ψ
µ
`,n

==⑤⑤⑤⑤⑤⑤⑤⑤⑤

ψ
µ

´,n´2}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

pΓiµ

ψ
µ
`,n´1

>>⑦⑦⑦⑦⑦⑦⑦⑦

ψ
µ

´,n´1~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

pΓi`qµ

ψ
µ
`,n´2

==⑤⑤⑤⑤⑤⑤⑤⑤

ψ
µ

´,n}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

¨ ¨ ¨

¨ ¨ ¨ // pΓi,´n´2
ψ

n´2

´,n´1

// pΓi,´n´1
ψ

n´1

´,n

//

ψ
n´1

´,µ

aa❇❇❇❇❇❇❇❇

pΓi,´n
ψn

´,n`1

//

ψn
´,µ

``❅❅❅❅❅❅❅❅

pΓi,´n`1

ψ
n`1

´,µ

aa❇❇❇❇❇❇❇❇

// ¨ ¨ ¨

where we write
pΓiµ “ SHIp´Y pKq,´pΓµ, S, iq

pΓi,`k “ SHIp´Y pKq,´pΓk, S, i` îkmin ´ înmin ` înmax ´ îµmaxq

pΓi,´k “ SHIp´Y pKq,´pΓk, S, i` îkmax ´ înmax ` înmin ´ î
µ
minq

for any k P N, and we abuse notations so that the maps ψ˚
`,˚, ψ

˚
´,˚ also denote the restrictions on

corresponding gradings. Note that î˚max and î˚min are the maximal and minimal nontrivial gradings

of SHIp´Y pKq,´pΓ˚q associated to S, respectively. By direct calculation, we have

(3.9) pΓi,`n`k – pΓi,`n`k´1 for k ą
i´ î

µ
min

q
and pΓi,`n´k “ 0 for ´ k ă

i´ îµmax
q

,

(3.10) pΓi,´n`k – pΓi,´n`k´1 for k ą
îµmax ´ i

q
and pΓi,´n´k “ 0 for ´ k ă

î
µ
min ´ i

q
.

Theorem 3.20. There exist two spectral sequences tpEr,`, dr,`qurě1 and tpEr,´, dr,´qurě1 with

E1,` “ E1,´ “ KHIp´ pY , pKq

induced by exact triangles in (3.8) involving ψ˚
`,˚ and ψ˚

´,˚, respectively. They are independent of
the choice of the integer n. Suppose tpEr,˘, dr,˘qurě1 converge to G˘, respectively. Then there are
isomorphisms

G˘ – I7p´ pY q.

Proof. The results about the spectral sequences are essentially from [LY20, Section 4.5]. Here we
give an alternative proof based on unrolled exact couples introduced in Subsection 2.1.

The exact triangles about ψ˚
`,˚ form an unrolled exact couple in the sense of Definition 2.1. For

simplicity, we consider the direct sum of the unrolled exact couples about i “ i0 ` 1, . . . , i0 ` q for
some i0 so that i P r̂iµmin, î

µ
maxs. Then the first page is the same as

KHIp´ pY , pKq “ SHIp´Y pKq,´pΓµq
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Since there are only finitely many nontrivial gradings of associated to S, this unrolled exact couple is

bounded. Proposition 2.3 provides a spectral sequence tpEr,`, dr,`qurě1 with E1,` “ KHIp´ pY , pKq.
Since

îkmax ´ îkmin “ kq ´ q0 ´ 1 ` 2gpKq and îµmax ´ î
µ
min “ q ´ 1 ` 2gpKq,

for any integers i ě î
µ
min and k ă n ´ pq ´ 1 ` 2gpKqq{q, we have

(3.11)

pi` îkmin ´ înmin ` înmax ´ îµmaxq ´ îkmax “ i ` p̂ikmin ´ îkmaxq ` p̂inmax ´ înminq ´ îµmax

“ i ´ pkq ´ q0 ´ 1 ` 2gpKqq ` pnq ´ q0 ´ 1 ` 2gpKqq ´ îµmax

“ i ` pn´ kqq ´ îµmax

ě î
µ
min ` pn ´ kqq ´ îµmax

“ pn ´ kqq ´ pq ´ 1 ` 2gpKqq

ą 0.

For such k, we have pΓi,`k “ 0. Thus, by Theorem 2.4, we know that tpEr,`, dr,`qurě1 converges to

G` “
i0`qà
i“i0`1

pΓi,`n`l Ă SHIp´Y pKq,´pΓn`lq

for some large integer l. The calculation in (3.11) also indicates that G` lives in the middle gradings

of SHIp´Y pKq,´pΓn`lq. Hence by Lemma 3.14 and Theorem 3.16, we know that G` – I7p´ pY q.
The independence of the integer n follows from Lemma 3.13 and Lemma 3.12.

Similar argument applies to exact triangles involving ψ˚
´,˚ and we obtain another spectral se-

quence tpEr,´, dr,´qurě1 with E1,´ “ KHIp´ pY , pKq, which converges to

G´ Ă SHIp´Y pKq,´pΓn`lq

in middle gradings for some large integer l. Also, we have G´ – I7p´ pY q. �

3.5. Bent complexes.
In this subsection, we construct the bent complex and relate its homology to negative large

surgeries. The construction and the name are inspired by Heegaard Floer theory (c.f. [Ras07,
Section 4.1], [RR17, Section 2.2]; see also [OS04a, Section 4]).

Construction 3.21. Suppose µ̂ “ qµ` pλ. Consider the spectral sequences tpEr,`, dr,`qurě1 and

tpEr,´, dr,´qurě1 constructed in Theorem 3.20. By fixing a basis of KHIp´ pY , pKq, Construction 2.6
provides two filtered chain complexes

pKHIp´ pY , pKq, d`q and pKHIp´ pY , pKq, d´q

such that the induced spectral squences are tpEr,`, dr,`qurě1 and tpEr,´, dr,´qurě1, respectively.
For any integer s, the bent complex is

As “ Asp´Y,Kq :“ p
à
kPZ

SHIp´Y pKq,´pΓµ, S, s` kqq, dsq,
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where for any element x P SHIp´Y pKq,´pΓµ, S, s` kqq,

dspxq “

$
’&
’%

d`pxq k ą 0,

d`pxq ` d´pxq k “ 0,

d´pxq k ă 0.

It is easy to check ds ˝ ds “ 0.

Remark 3.22. Since SHI is a projectively transitive system, the maps dr,` and dr,´ only well-defined
up to multiplication of a unit. However, the kernel and the image of a map are still well-defined, so
we can still define exact sequences for projectively transitive systems. Moreover, if f : A Ñ B and
g : A Ñ C are maps between projectively transitive systems, though the map

f ` g :“ pf, gq : A Ñ B ‘ C

is not well-defined, its kernel Ker f X Ker g and image Im f ‘ Im g are well-defined, so there is no
ambiguity to consider the homology of the bent complex. Alternatively, by discussion in Subsection
3.1, we can always fix closures of corresponding balanced sutured manifolds and consider linear
maps between actual vector spaces, at the cost that equations between maps only hold up to
multiplication by a unit.

The main theorem of this subsection is the following.

Theorem 3.23. Suppose µ̂ “ qµ ` pλ with q P N`. For any integer s, let HpAsq denote the
homology of the bent complex As in Construction 3.21. For any integer n satisfying pn´1qq ě 2gpKq,
we have an isomorphism for some integer jn:

(3.12) as,n : HpAsq
–

ÝÑ SHIp´Y pKq,´γ2λ̂´p2n´1qµ̂, S, s ` jnq.

Suppose the maximal and minimal nontrivial gradings of SHIp´Y pKq,´γ2λ̂´p2n´1qµ̂q are î7max and

î
7
min, which can be calculated by Lemma 3.8. Then we have

jn “ î
7
min ´ înmin ` înmax ´ îµmax “ î7max ´ înmax ` înmin ´ î

µ
min.

Remark 3.24. By Definition 3.7, we have iymax ´ i
y
min “ 2gpKq ` y ´ 1. Then

p̂i7min
ˆ́inmin ` înmax ´ îµmaxq ´ p̂i7max ´ înmax ` înmin ´ î

µ
minq

“ 2p̂inmax ` înmin´q ´ p̂i7max ´ î
7
minq ´ p̂iµmax ´ î

µ
minq

“ 2pnq ´ q0 ´ 1q ´ pp2n ´ 1qq ´ 2q0 ´ 1q ´ pq ´ 1q

“ 0.

Hence jn in Theorem 3.23 is well-defined.

Proof of Theorem 3.23. We consider two cases. The first case is special, and we use the octahedral
axiom to prove it. The second case is more general, and we reduce it to the first case. For the bent
complex As, we fix i “ s in the diagram (3.8).

Case 1. Suppose pΓi,`k “ pΓi,´k “ 0 for k ď n´ 2 in the diagram (3.8).
In this case, higher differentials dr,˘ for r ě 2 vanish and the maps

ψn´1
˘,µ : pΓi,˘n´1 Ñ pΓi˘qµ

are isomorphisms. Hence

As “ ppΓiµ ‘ pΓi,`n´1 ‘ pΓi,´n´1, fq,
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where
f : pΓiµ Ñ pΓi,`n´1 ‘ pΓi,´n´1

fpxq “ pβ`pxq, β´pxqq

is the restriction of pψµ`,n´1pxq, ψµ´,n´1pxqq. Define g : pΓi,`n´1 ‘ pΓi,´n´1 Ñ pΓi,`n´1 to be the projection
map. Then we apply Theorem 2.7 to

X “ pΓiµ, Y “ pΓi,`n´1 ‘ pΓi,´n´1, Z “ pΓi,`n´1, X
1 “ pΓi,´n´1, Y

1 “ pΓi,`n , Z 1 “ HpAsq.

Then there exist maps ψ and φ satisfying the following diagram

HpAsq

ψ

""❊
❊❊

❊❊
❊❊

❊❊

pΓi,`n´1 ‘ pΓi,´n´1

g

%%❑❑
❑❑

❑❑
❑❑

❑❑
❑

99rrrrrrrrrr
pΓi,`n

φ

��❀
❀❀

❀❀
❀❀

❀❀
❀❀

❀❀
❀❀

❀❀
❀❀

❀

pΓi,`n´1

0

**❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚

==③③③③③③③③③

pΓiµ

f

>>⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦

g˝f“β`

33❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤ pΓi,´n´1

Thus, we obtain a long exact sequence

¨ ¨ ¨ Ñ HpAsq
ψ

ÝÑ pΓi,`n
φ
ÝÑ pΓi,´n´1 Ñ HpAsqt1u Ñ ¨ ¨ ¨

Let

α` : pΓi,`n Ñ pΓiµ
be the restriction of ψn`,µ. By the proof of Theorem 2.7, we know that φ is constructed by f . Since

pΓi,`n – Kerpβ`q ‘ Cokerpβ`q,

the map φ is zero on Cokerpβ`q and the same as β´ ˝ α` on Kerpβ`q. Thus, we have

(3.13) HpAsq – HpConepφqq “ HpConepβ´ ˝ α`qq.

Note that we assume µ̂ “ qµ ` pλ for q ě 0 and λ̂ “ q0µ ` p0λ satisfying Definition 3.5. When
n is large, the coefficient of µ in

µ̂1 :“ nµ̂´ λ̂ “ pnq ´ q0qµ ` pnp´ p0qλ

is positive. By Definition 3.5 we set

λ̂1 :“ λ̂´ pn´ 1qµ̂ “ pq0 ´ pn´ 1qqqµ ` pp0 ´ pn´ 1qpqλ.

Then

λ̂1 ` µ̂1 “ µ̂ and λ̂1 ´ µ̂1 “ 2λ̂´ p2n´ 1qµ̂.

Note that γxλ`yµ “ γ´xλ´yµ. Applying the diagram (3.5) with ψ´
`,˚ and ψ`

´,˚ switched to

pΓµpµ̂1q “ γµ̂1 “ pΓn, pΓ´1pµ̂1q “ γ
λ̂1`µ̂1 “ pΓµ, and pΓ0pµ̂1q “ γ

λ̂1 “ pΓn´1,
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we obtain the following commutative diagram

(3.14) SHIp´Y pKq,´pΓ´1pµ̂1qq
ψ

´1

`,0
pµ̂1q

// SHIp´Y pKq,´pΓ0pµ̂1qq

SHIp´ pY pKq,´pΓµpµ̂1qq

ψ
µ

´,´1
pµ̂1q

jj❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚ ψ
µ

´,0
pµ̂1q

55❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

where the notations µ̂1 in bypass maps indicate that they correspond to µ̂1. By comparing the
grading shifts, we have

ψ´1
`,0pµ̂1q “ β´ and ψµ´,´1pµ̂1q “ α`.

Indeed, this can be obtained by a diagramatic way in [LY20, Remark 4.17].

Let δ : pΓi,`n Ñ pΓi,´n´1 be the restriction of

ψ
µ
´,0pµ̂1q : SHIp´ pY pKq,´pΓnq Ñ SHIp´Y pKq,´pΓn´1q.

Then (3.14) implies δ “ β´ ˝ α` “ φ.
Applying the negative bypass triangle in Theorem 3.10 to

pΓµpµ̂1q “ γµ̂1 “ pΓn, pΓ0pµ̂1q “ γ
λ̂1 “ pΓn´1, and pΓ1pµ̂1q “ γ

λ̂1´µ̂1 “ γ2λ̂´p2n´1qµ̂,

we have the following exact triangle

(3.15) SHIp´Y pKq,´pΓ0pµ̂1qq
ψ0

´,1pµ̂1q
// SHIp´Y pKq,´pΓ1pµ̂1qq

ψ1

´,µpµ̂1quu❥❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥

SHIp´ pY pKq,´pΓµpµ̂1qq

ψ
µ

´,0
pµ̂1q

ii❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚

By grading shifts in Theorem 3.10, the restriction of (3.15) on a single grading implies

(3.16) HpConepδqq – SHIp´ pY pKq,´γ2λ̂´p2n´1qµ̂, S, jnq

Then the isomorphism in (3.12) follows from (3.13) and (3.16).

Case 2. We do not suppose pΓi,`k “ pΓi,´k “ 0 for all k ď n ´ 2 in the diagram (3.8). Since

pn ´ 1qq ě 2gpKq and i P r̂iµmin, î
µ
maxs, we have

|
i´ î

µ
min

q
|, |
i´ îµmax

q
| ď |

îµmax ´ î
µ
min

q
| “

q ´ 1 ` 2gpKq

q
ă n.

By (3.9) and (3.10), we have pΓi,˘0 “ 0.
In this case, let

A1
s “ p

à

kPZzt0u

SHIp´Y pKq,´pΓµ, S, s ` kqq, dsq

be the subcomplex of As. The quotient As{A
1
s is SHIp´Y pKq,´pΓµ, S, sq with no differentials. Then

we have a long exact sequence

¨ ¨ ¨ Ñ HpA1
sq Ñ HpAsq Ñ HpAs{A

1
sq

B˚
ÝÝÑ HpA1

sqt1u Ñ ¨ ¨ ¨

Since pΓi,˘0 “ 0, by Theorem 2.4, we know that

(3.17) HpA1
sq – pΓi,`n´1 ‘ pΓi,´n´1.



24 ZHENKUN LI AND FAN YE

It is straightforward to check B˚ “ pβ`, β´q under the isomorphism (3.17). Then by Case 1, we
have

HpAsq – HpConepB˚qq – HpConepfqq – HpConepφqq – SHIp´ pY pKq,´γ2λ̂´p2n´1qµ̂, S, jnq.

�

Then we prove the large surgery formula for negative surgeres.

Theorem 3.25 (Theorem 1.22, n ą 0). Suppose pµ “ qµ`pλ with q P N` and suppose pλ “ q0µ`p0λ
is defined as in Definition 3.4. Note that when pq, pq “ p1, 0q, we have pq0, p0q “ p0, 1q. For a fixed
integer n satisfying pn ´ 1qq ě 2gpKq, suppose

µ̂1 “ nµ̂ ´ λ̂ “ pnq ´ q0qµ ` pnp´ p0qλ.

For any integer s1, suppose rs1s is the image of s1 in Zpnq´q0q. Suppose

smin “ ´pnq ´ q0 ´ 1q ´ r´
q ´ 1

2
s ` gpKq and smax “ pnq ´ q0 ´ 1q ´ r

q ´ 1

2
s ´ gpKq

and suppose an integer s P rsmin, smaxs. For such n and s, there is an isomorphism

HpA´sq – I7p´ pYµ̂1 , rs´ sminsq.

Remark 3.26. When pn ´ 1qq ě 2gpKq, there are more than pnq ´ q0q integers in the interval

rsmin, smaxs. Thus, the bent complexes contain all information of I7p´ pYµ̂1 q.

Proof of Theorem 3.25. Since pn´ 1qq ě 2gpKq, we apply Theorem 3.23 to obtain

HpA´sq – SHIp´Y pKq,´γ2λ̂´p2n´1qµ̂, S, jn ´ sq.

We adapt the notations

λ̂1 “ λ̂´ pn ´ 1qµ̂ and λ̂1 ´ µ̂1 “ 2λ̂´ p2n´ 1qµ̂ “ p2q0 ´ p2n´ 1qqqµ ` p2p0 ´ p2n´ 1qpqλ

from the proof of Theorem 3.23. Then pΓ1pµ̂1q “ γ2λ̂´p2n´1qµ̂. Since pn´ 1qq ě 2gpKq, we have

p2n´ 1qq ´ 2q0 ě nq ´ q0 ` 2gpKq.

Hence we can apply Theorem 3.16 to obtain

I7p´ pYµ̂1 , rssq – SHIp´Y pKq,´γ2λ̂´p2n´1qµ̂, S, î
7
max ´ 2gpKq ´ sq.

By direct calculation, we have

jn ´ smin “î7max ´ înmax ` înmin ´ î
µ
min ´ smin

“î7max ´ 2gpKq ´ pnq ´ q0 ´ 1q ´ r´
q ´ 1

2
s ` gpKq ´ smin

“î7max ´ 2gpKq.

For any s P rsmin, smaxs, we have

jn ´ s “î7min ´ înmin ` înmax ´ îµmax ´ s

“î7min ` 2gpKq ` pnq ´ q0 ´ 1q ´ r
q ´ 1

2
s ´ gpKq ´ s

ěî7min ` 2gpKq.

Thus, the isomorphism follows from Definition 3.17 and Lemma 3.14. �
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Finally, we state an instanton analog of [OS08, Theorem 2.3] and [OS11, Theorem 4.1], which is
an important step of the proof of the mapping cone formula (c.f. Section 8).

Construction 3.27. Following notations in Construction 3.21. For ˝ P t`,´u, define

B˝
s “ Bsp´Y,Kq :“ p

à
kPZ

SHIp´Y pKq,´pΓµ, S, s ` kqq, d˝q

and define

π˝
s : As Ñ B˝

s

by

π`
s pxq “

#
x k ą 0,

0 k ď 0,
and π´

s pxq “

#
0 k ě 0,

0 k ă 0,

where x P SHIp´Y pKq,´pΓµ, S, s` kqq.

Suppose µ̂ “ qµ ` pλ with q P N`. For n and s in Theorem 3.23, let HpAsq, HpB`
s q, HpB´

s q
be homologies of complexes in Construction 3.21 and let pπ`

s q˚, pπ
´
s q˚ denote the induced maps on

homologies. Let jn be the integer in Theorem 3.23 and write pΓs,7 for

SHIp´Y pKq,´γ2λ̂´p2n´1qµ̂, S, jn ` sq.

By Theorem 3.23, we have an isomorphism

as,n : HpAsq
–

ÝÑ pΓs,7

We use notations in (3.8) and set i “ s. Let

ρ` : pΓs,7 Ñ pΓs,`n
be the restriction of ψ1

´,µpµ̂1q in the proof of Theorem 3.23. Choose l as in the proof of Theorem

3.20 so that pΓs,`n`l Ă G`. Note that HpB˘
s q “ pΓs,˘n`l by the proof of Theorem 3.20. Let

Φn`,n`l : pΓs,`n Ñ pΓs,`n`l

be the composition of ψn`k
`,n`k`1 for k “ 0, . . . , l ´ 1. Similarly, let

ρ´ : pΓs,7 Ñ pΓs,´n
be the restriction of ψ1

`,µpµ̂1q and let

Φn´,n`l : pΓs,´n Ñ pΓs,´n`l Ă G´

be the composition of ψn`k
´,n`k`1 for k “ 0, . . . , l ´ 1.

Proposition 3.28. Then the following diagram commute

HpAsq
pπ˘

s q˚ //

as,n

��

HpB˘
s q

“

��
pΓs,7

Φn
˘,n`l˝ρ˘ // pΓs,˘n`l,

Proof. The proof is straightforward by the proof of Theorem 3.23. �
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Remark 3.29. By direct calculation, the difference of gradings of pΓs,`n`l and
pΓs,´n`l is

p̂in`l
min ´ înmin ` înmax ´ îµmaxq ´ p̂in`l

max ´ înmax ` înmin ´ î
µ
minq

“ ´p̂in`l
max ´ în`l

minq ` 2p̂inmax ´ înminq ´ p̂iµmax ´ î
µ
minq

“ ´pn ` lqq ` q0 ` 2pnq ` q0q ´ q

“ pn ´ l ´ 1qq ` q0.

Since gcdpq, q0q “ 1, by Lemma 3.14, the space pΓs,`n`l and
pΓs,´n`l correspond to I7p´ pY , rs0 ` q0sq and

I7p´ pY , rs0sq for some integer s0, respectively. Note that the core knot corresponding to µ̂ “ qµ`pλ

is isotopic to the curve q0µ` p0λ on BY pKq.

3.6. Dual bent complexes.
In this subsection, we construct the dual bent complex and relate its homology to large positive

surgeries. Proofs are similar to those in Subsection 3.5, so we only point out the difference.

Construction 3.30. Following notations in Construction 3.21. For any integer s, define the dual
bent complex as

A_
s “ A_

s p´Y,Kq :“ p
à
kPZ

SHIp´Y pKq,´pΓµ, S, s` kqq, d_
s q,

where for any element x P SHIp´Y pKq,´pΓµ, S, s` kqq,

dspxq “

$
’&
’%

d´pxq k ą 0,

d`pxq ` d´pxq k “ 0,

d`pxq k ă 0.

Similar to Theorem 3.23 and Theorem 3.25, we have the following theorems.

Theorem 3.31. Suppose µ̂ “ qµ ` pλ with q P N`. For any integer s, let HpA_
s q denote the

homology of the bent complex A_
s in Construction 3.30. For any integer n satisfying pn ´ 1qq ě

2gpKq, we have an isomorphism for some integer j_
n :

(3.18) a_
s,n : HpA_

s q
–
ÝÑ SHIp´Y pKq,´γ2λ̂`p2n`1qµ̂, S, s` j_

n q.

Suppose the maximal and minimal nontrivial gradings of SHIp´Y pKq,´γ2λ̂`p2n`1qµ̂q are î7,_max and

î
7,_
min, which can be calculated by Lemma 3.8. Then we have

j_
n “ î7,_max ´ î´nmax ` î´nmin ´ î

µ
min “ î

7,_
min ´ î´nmin ` î´nmax ´ îµmax.

Theorem 3.32 (Theorem 1.22, n ă 0). Suppose pµ “ qµ`pλ with q P N` and suppose pλ “ q0µ`p0λ
is defined as in Definition 3.4. Note that when pq, pq “ p1, 0q, we have pq0, p0q “ p0, 1q. For a fixed
integer n satisfying pn ´ 1qq ě 2gpKq, suppose

µ̂2 “ nµ̂ ` λ̂ “ pnq ` q0qµ` pnp ` p0qλ.

For any integer s1, suppose rs1s is the image of s1 in Zpnq`q0q. Suppose

s_
min “ ´pnq ` q0 ´ 1q ´ r´

q ´ 1

2
s ` gpKq and s_

max “ pnq ` q0 ´ 1q ´ r
q ´ 1

2
s ´ gpKq

and suppose an integer s P rs_
min, s

_
maxs. For such n and s, there is an isomorphism

HpA_
´sq – I7p´ pYµ̂2 , rs´ s_

minsq.
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Proof of Theorem 3.31. Instead of using the diagram 3.8, we use the following diagram of exact
triangles from Proposition 3.10:
(3.19)

¨ ¨ ¨ pΓi,`´n`1
oo

ψ
´n`1

`,µ ""❉
❉❉

❉❉
❉❉

❉❉
pΓi,`´n

ψ
´n
`,´n`1oo

ψ
´n
`,µ   ❇

❇❇
❇❇

❇❇
❇❇

pΓi,`´n´1

ψ
´n´1

`,´noo

ψ
´n´1

`,µ ""❉
❉❉

❉❉
❉❉

❉❉
pΓi,`´n´2

ψ
´n´2

`,´n´1oo ¨ ¨ ¨oo

¨ ¨ ¨ pΓi´qµ

ψ
µ
`,´n

<<③③③③③③③③③

ψ
µ
´,´n´2||③③

③③
③③
③③

pΓiµ

ψ
µ
`,´n´1

>>⑤⑤⑤⑤⑤⑤⑤⑤⑤

ψ
µ
´,´n´1~~⑤⑤

⑤⑤
⑤⑤
⑤⑤
⑤

pΓi`qµ

ψ
µ
`,´n´2

<<③③③③③③③③③

ψ
µ
´,´n||③③

③③
③③
③③
③

¨ ¨ ¨

¨ ¨ ¨ // pΓi,´´n´2
ψ

´n´2

´,´n´1

// pΓi,´´n´1
ψ

´n´1

´,´n

//

ψ
´n´1

´,µ

bb❉❉❉❉❉❉❉❉

pΓi,´´n
ψ

´n
´,´n`1

//

ψ
´n
´,µ

``❇❇❇❇❇❇❇❇❇

pΓi,´´n`1

ψ
´n`1

´,µ

bb❉❉❉❉❉❉❉❉

// ¨ ¨ ¨

where we write

pΓiµ “ SHIp´Y pKq,´pΓµ, S, iq
pΓi,`´k “ SHIp´Y pKq,´pΓ´k, S, i` î´kmax ´ î´nmax ` î´nmin ´ î

µ
minq

pΓi,´´k “ SHIp´Y pKq,´pΓ´k, S, i` î´kmin ´ î´nmin ` î´nmax ´ îµmaxq

for any k P N, and we abuse notation so that the maps ψ˚
`,˚, ψ

˚
´,˚ also denote the restrictions on

corresponding gradings. In this case, we have

(3.20) pΓi,`´n´k – pΓi,`´n´k´1 for k ą
îµmax ´ i

q
and pΓi,`´n`k “ 0 for ´ k ă

î
µ
min ´ i

q
,

(3.21) pΓi,´´n´k – pΓi,´´n´k´1 for k ą
i´ î

µ
min

q
and pΓi,´´n`k “ 0 for ´ k ă

i´ îµmax
q

.

By Proposition 2.3 and Theorem 2.4, there exist spectral sequences from
à
kPZ

pΓi`kqµ

to pΓi,`´n´l and
pΓi,´´n´l for some large l. By Lemma 3.12, those spectral sequences are isomorphic to

tpEr,`, dr,`qurě1 and tpEr,´, dr,´qurě1 in Theorem 3.20, hence we can define the dual bent complex
by maps in (3.19).

By Definition 3.5, we set

µ̂2 “ nµ̂` λ̂ and λ̂2 “ ´µ̂.

Then

λ̂2 ´ µ̂2 “ ´λ̂´ pn ` 1qµ̂ and λ̂2 ´ 2µ̂2 “ ´2λ̂´ p2n` 1qµ̂.

Note that γxλ`yµ “ γ´xλ´yµ.
Similar to the proof of Theorem 3.23, we consider two cases and finally obtain that

HpA_
i q –Conepψ´n

`,µ ` ψ´n
´,µ : pΓi,`´n ‘ pΓi,´´nq Ñ pΓiµ

–Conepψµ´,´n´1 ˝ ψ´n
`,µ : pΓi,`´n : pΓi,´´n´1qq

–SHIp´Y pKq,´γ2λ̂`p2n`1qµ̂, S, i` j_
n q.

�
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Proof of Theorem 3.32. Similar to the proof of Theorem 3.25, the isomorphism follows from Theo-
rem 3.16, Definition 3.17, and Lemma 3.14. �

The following proposition explains the name of the ‘dual bent complex’.

Proposition 3.33. A_
s p´Y,Kq is the dual complex of A´spY,Kq.

Proof. Suppose pȲ , K̄q “ p´Y,Kq is the mirror knot of pY,Kq. Note that p´Ȳ , K̄q “ pY,Kq.
Suppose S is the Seifert surface of S of K. Then ´S is the induced Seifert surface of K̄. By
Proposition 3.3, we have canonical isomorphisms

SHIp´Ȳ pK̄q,´pΓn,´S, iq “SHIpY pKq,´pΓ´n,´S, iq

–SHIpY pKq,´pΓ´n, S,´iq

–HomCpSHIp´Y pKq,´pΓ´n, S,´iq,Cq

.

Then this proposition follows from the fact that both diagram (3.8) and diagram (3.19) can be
used to define the bent complex and the dual bent complex. �

3.7. Grading shifts of differentials.
In this subsection, we study the grading shifts of differentials d` and d` and relate the bent

complex to the dual bent complex. First, it is straightforward to check from the construction that
the map d` increases the Z-grading and d´ decreases the Z-grading. So we focus on the grading
shifts of d` and d´ on the relative Z2-grading.

Convention. Throughout this subsection, ‘grading’ means the relative Z2-grading and we setM “
Y pKq for a rationally null-homologous knot K Ă Y . The bypass map ψ˚

`,˚ and the corresponding
negative one ψ˚

´,˚ are from SHIp´M,´γ1q to SHIp´M,´γ2q for some γ1 and γ2 consisting of two
parallel simple closed curves.

Since all bypass maps are homogeneous (they are constructed by cobordism maps, c.f. the proof
of [BS18a, Theorem 1.20]), the differentials d` and d´ are also homogeneous. To study the grading
shifts of d` and d´, we first show that bypass maps ψ˚

`,˚ and ψ˚
´,˚ have the same grading shift.

We start with the following lemma.

Lemma 3.34. Suppose ψ˚
`,˚ and ψ˚

´,˚ are two bypass maps from SHIp´M,´γ1q to SHIp´M,´γ2q
and suppose ιγ1 and ιγ2 are involutions defined in (3.6). Then we have

ψ˚
´,˚ “ ιγ2 ˝ ψ˚

´,˚ ˝ ιγ1 .

Proof. By construction in [LY20, Section 4.2]), that the bypass arc related to ψ˚
`,˚ on pY pKq, γxλ`yµq

is the same as the bypass arc related to ψ˚
´,˚ on pY pKq,´γxλ`yµq. Hence we show two compositions

of maps are the same. �

Corollary 3.35. The involution ιγ induces an isomorphism between spectral sequences tpEr,`, dr,`qurě1

and tpEr,´, dr,´qurě1 constructed in Theorem 3.20 and hence induces an isomorphism between the
chain complexes

pKHIp´Y,Kq, d`q and pKHIp´Y,Kq, d´q.

Moreover, it induces a canonical identification between A´s and As.

Lemma 3.36. Suppose ψ˚
`,˚ and ψ˚

´,˚ are two bypass maps from SHIp´M,´γ1q to SHIp´M,´γ2q.
If x is a homogeneous element in SHIp´M,´γ1q, then ψ˚

`,˚pxq and ψ˚
´,˚pxq are homogeneous ele-

ments in SHIp´M,´γ2q and they have the same grading.
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Proof. By Lemma 3.34, it suffices to prove that ιγ preserves the grading for any γ Ă BM . By
construction of SHIp´M,´γq in [KM10b, BS15], we can construct a closure pY 1, R, ωq of p´M,´γq
with gpRq ě 2 and take the p2, 2gpRq´2q-eigenspace of pµppt, µphqq on IωpY 1q. It is straightforward
to check that pY 1,´R,ωq is a closure of p´M,γq. Since γ and ´γ are isotopic on BM – T 2, there
is a diffeomorphism between pY 1, R, ωq and pY 1,´R,ωq. Moreover, under this diffeomorphism, the
involution ιγ becomes the isomorphism between the p2, 2gpRq´2q-eigenspace and the p2, 2´2gpRqq-
eigenspace of pµppt, µphqq on IωpY 1q. Note that IωpY 1q has a Z8-grading and µpptq and µpRq have
degree ´4 and ´2, respectively. Explicitly, the involution sends

pv0, v1, v2, v3, v4, v5, v6, v7q P IωpY 1q

to

pv0, v1,´v2,´v3, v4, v5,´v6,´v7q,

which preserves the Z2-grading induced by the Z8-grading. �

Proposition 3.37. Suppose d` and d´ are differentials on KHIp´Y,Kq induced by spectral se-
quences tpEr,`, dr,`qurě1 and tpEr,´, dr,´qurě1 in Theorem 3.20. For any homogeneous element
x P KHIp´Y,Kq, the gradings of d`pxq and d´pxq are different from the grading of x.

Proof. We only prove for d`pxq. The proof for d´pxq is similar. We adapt notations in diagram

(3.8). Without loss of generality, suppose x P pΓiµ. Consider the projection y of d`pxq on pΓi`kqµ for

some k P N`. By construction of d`, there exist homogeneous elements z P pΓi,`n´1 and w P pΓi,`n´k so
that

y “ ψn´k
`,µ pwq and z “ ψ

µ
`,n´1pxq “ ψn´2

`,n´1 ˝ ¨ ¨ ¨ ˝ ψn´k
`,n´k`1pwq.

By Lemma 3.36, the element

z1 :“ ψn´2
´,n´1 ˝ ¨ ¨ ¨ ˝ ψn´k

´,n´k`1pwq

has the same grading as z. By Lemma 3.12, we have

ψn´1
`,µ pz1q “ y.

Define

u :“ ψn´1
`,n pz1q and u1 :“ ψn´1

´,n pz1q.

By Lemma 3.36, they have the same grading. By 3.12, we have

ψn`,µpu1q “ y.

Let gr2pxq denote the grading of x and let gr2pψ˚
`,˚q denote the grading shift of ψ˚

`,˚. Then we
have

gr2pyq ´ gr2pxq “ pgr2pyq ´ gr2pu1qq ` pgr2puq ´ gr2pz1qq ` pgr2pzq ´ gr2pxqq

“ gr2pψn`,µq ` gr2pψn´1
`,n q ` gr2pψµ`,n´1q

“ 1,

where the last equation follows from the fact that the bypass exact triangle shifts the grading (the
bypass exact triangle comes from the surgery exact triangle, c.f. the proof of [BS18a, Theorem
1.20]). Since any projection of d`pxq has different grading from x, the we know that d`pxq has
different grading from x. �
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4. Vanishing results about contact elements

In this section, we study contact elements in Heegaard Floer theory and instanton theory. In
particular, we prove Theorem 1.23, Theorem 1.25, and a vanishing result for cobordism maps. We
only need Corollary 4.16 in the rest sections.

4.1. Contact elements in Heegaard Floer theory.
In this subsection, we review the strategy to prove the vanishing result about Giroux torsion in

[GHVHM08].
Suppose pN, ξq is a contact 3-manifold with convex boundary and dividing set Γ on BN . Honda,

Kazez, and Matić [HKM09] defined an element cpN,Γ, ξq in sutured Floer homology SFHp´N,´Γq,
called the contact element of pN, ξq. When pN, ξq is obtained from a closed contact 3-manifold
pY, ξ1q by removing a 3-ball, the element

cpN,Γ, ξq P SFHp´N,´Γq – yHF p´Y q

recovers the contact element cpY, ξ1q P yHF p´Y q defined by Ozsváth and Szabó [OS05a].
Consider the Giroux torsion defined in Definition 1.24. We have the following vanishing result.

Theorem 4.1 ([GHVHM08, Theorem 1]). If a closed contact 3-manifold pY, ξq has Giroux torsion,

then its contact element cpY, ξq P yHF p´Y q vanishes.

Remark 4.2. The statement of Theorem 4.1 in [GHVHM08] is about Z coefficient. However, since
the naturality of SFH is only proved for F2 coefficient [JTZ18], the contact element in Z coefficient
is not well-defined. Some progress about the naturality for Z coefficient is made in [Gar19].

Remark 4.3. There are many partial results and applications of Theorem 4.1. See the introduction
of [GHVHM08].

Following the notations in [Hon00, Section 5.2], consider a basic slice N0 “ pT 2 ˆ I, ξ̄q with the
dividing set Γ˚ on T 2 ˆ tiu for i “ 0, 1 consisting of two parallel curves of slopes s0 “ 8 and
s1 “ 0. There are two possible choices of tight structures on N0 corresponding to two bypasses
ψ
µ
`,0 and ψ

µ
´,0. They are both positively co-oriented but have different orientations. Hence the

relative Euler classes differ by signs. Let ξ̄ be the tight structure on N0 corresponding to ψµ`,0.
Let Nnπ

2
be obtained from N0 by rotating counterclockwise by nπ

2 . Note that Nπ is the basic slice

corresponding to ψµ´,0 and Nnπ
2

`2π “ Nnπ
2
. Define

pN˚, ζ
`
1 q “ N0 YNπ

2
YNπ YN 3π

2

YN2π and pN˚, ζ
´
1 q “ Nπ YN 3π

2

YN2π YN 5π
2

YN3π.

Then Theorem 4.1 follows from the following three lemmas.

Lemma 4.4 ([GHVHM08, Lemma 5]). A contact closed 3-manifold pY, ξq has Giroux torsion if
and only if there exists an embedding of pN˚,Γ˚, ζ

`
1 q or pN˚,Γ˚, ζ

`
1 q into pY, ξq.

Remark 4.5. In the definition of Giroux torsion, there is no condition on the orientation of the
contact structure. By construction, the contact structures ζ`

1 and ζ´
1 differ by orientations. In

[GHVHM08], the authors did not deal with these two contact structures separately (c.f. the defini-
tion of ζ0 in [GHVHM08]) since the proofs are almost identical. Also, in the original statement of
[GHVHM08, Lemma 5], the slopes of dividing set on BN˚ are ´1 and ´2, respectively. However,
there is a diffeomorphism of T 2 ˆ I sending the slopes to 8 and 0, respectively. Note that under
this diffeomorphism, the slope 8 is sent to ´1.
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Lemma 4.6 ([HKM09, Theorem 4.5]). Let pY, ξq be a closed contact 3-manifold and N Ă Y be a
compact submanifold (without any closed components) with convex boundary and dividing set Γ. If
cpN,Γ, ξ|N q “ 0, then cpY, ξq “ 0.

Lemma 4.7 (From the proof of [GHVHM08, Theorem 1]). The elements cpN˚,Γ˚, ζ
`
1 q and cpN˚,Γ˚, ζ

´
1 q

vanish.

4.2. Construction of instanton contact elements.
In [BS16], Baldwin and Sivek constructed a contact invariant in sutured instanton theory which

we call the instanton contact element. In this subsection, we review the construction and prove
Theorem 1.23.

Definition 4.8. Suppose pM,γq is a balanced sutured manifold. A contact structure ξ on M is
said to be compatible if BM is convex and γ is the dividing set on BM .

A contact handle is a 3-ball B3 with the standard tight contact structure. The attachment of
B3 to a balanced sutured manifold pM,γq is called a contact i-handle attachment in following
cases:

(1) i “ 0 when the resulting manifold a disjoint union pM,γq YB3.
(2) i “ 1 when B3 is attached to pM,γq along two points on the suture γ.
(3) i “ 2 when B3 is attached to pM,γq along a simple closed curve δ on BM with |δ X γ| “ 2.

Suppose pM,γq is a balanced sutured manifold. Let pM 1, γ1q be the resulting manifold after
attaching a contact i-handle. Baldwin and Sivek [BS16, Section 3] constructed a map

(4.1) C : SHIp´M,´γq Ñ SHIp´M 1,´γ1q.

We sketch the construction as follows.

(1) When i “ 0 or 1, we can construct the same closure for pM,γq and pM 1, γ1q and define C to be
the identity map.

(2) When i “ 2, suppose δ Ă BM is the attaching curve of the contact handle. Then a closure
of pM 1, γ1q can be obtained from a closure of pM,γq by performing a 0-surgery along δ, with
respect to the framing from BM . Then C is induced by the corresponding cobordism between
closures.

Suppose pM,γq Ă pM 1, γ1q is a proper inclusion of balanced sutured manifolds and suppose ξ is
a contact strucutre compatible with pM 1zintM,γ1 Y p´γqq. Based on maps associated to contact
handle attachments, we can construct a contact gluing map

Φξ : SHIp´M,´γq Ñ SHIp´M 1,´γ1q.

The first author [Li18b] showed that the contact gluing map is functorial, i.e. it is indepedent of
the contact handle decompositions and gluing two contact structures induces composite maps.

For a balanced sutured manifold pM,γq and a compatible contact structure ξ, there are a few
ways to decompose ξ [HKM09, BS16].

Partial open book decomposition. A partial open book decomposition is a triple pS, P, hq
where S is a compact surface with non-empty boundary, P Ă S a subsurface, and h : P Ñ S an
embedding so that h is the identity on BP X BS.

Contact cellular decomposition. A contact cellular decomposition of ξ over pM,γq is, roughly
speaking, a Legendrian graph K Ă M so that BK Ă γ andMzintNpKq is diffeomorphic to a product
r´1, 1sˆF for some surface F withboundary and ξ restricts to the r´1, 1s-invariant contact structure
on MzintNpKq – r´1, 1s ˆ F .
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Contact handle decomposition. A contact handle decomposition is a decomposition of
pM,γ, ξq into contact 0-, 1-, and 2-handles described above.

These three decompositions can be related to each other as follows.
Suppose we have a contact cellular decomposition, i.e., a Legendrian graph K Ă M so that

MzintNpKq is a product manifold equipped with the product contact structure. Then MzintNpKq
equipped with the restriction of ξ can be decomposed into a contact 0-handle and a few contact
1-handles. Furthermore, each edge of the Legendrian graph K corresponds to a contact 2-handle
attached along a meridian of the edge. This gives rise to a contact handle decomposition of pM,γ, ξq.

Suppose we have a contact handle decomposition of pM,γ, ξq, we can obtain a partial open book
decomposition as follows. All 0- and 1- handle form a product sutured manifold pr´1, 1sˆS, t0uˆBSq.
Suppose 2-handles are attached along curves δ1,..., δn. Let P Ă t1u ˆ S be a neighborhood of
pδ1 Y ¨ ¨ ¨ Y δnq X t1u ˆ S. Isotope pδ1 Y ¨ ¨ ¨ Y δnq X t´1u ˆ S through r´1, 1s ˆ S onto t1u ˆ S.
Let h : P Ñ S be the embedding so that h|BSXBP is the identity and δi X t1u ˆ S is sent to the
image of δi ˆ t´1u ˆ S under the isotopy for i “ 1, . . . , n. Then pS, P, hq is a partial open book
decomposition of pM,γ, ξq.

Suppose we have a partial open book decomposition pS, P, hq of pM,γ, ξq. We know that
pr´1, 1s ˆ S, t0u ˆ BSq is a product sutured manifold that admits a product contact structure
ξ0. This can be decomposed into a contact 0-handle and a few contact 1-handles. Let a1, ..., an be a
collection of disjoint properly embedded arcs on S so that ai Ă P and S´ pa1 Y ¨ ¨ ¨Yanq retracts to
S´P . Let δi be the union of ai and hpaiq. Then pM,γ, ξq is obtained from pr´1, 1sˆS, t0uˆBS, ξ0q
by attaching contact 2-handles along all δi.

Definition 4.9 ([BS16]). Suppose pM,γq is a balanced sutured manifold and ξ is a compatible
contact structure. Suppose ξ has a partial open book decomposition pS, h, P q. Let δ1,..., δn be the
attaching curves of the contact 2-handles so that pM,γ, ξq is obtained from pr´1, 1s ˆ S, t0u ˆ BSq
as above. Suppose the element 1 is the generator of

SHIp´r´1, 1s ˆ S,´t1u ˆ Sq – C.

Then the instanton contact element of pM,γ, ξq is

θpM,γ, ξq :“ Cδn ˝ ¨ ¨ ¨ ˝ Cδ1p1q P SHIp´M,´γq,

where Cδi is the contact gluing map associated to the contact 2-handle attachment along δi.

Theorem 4.10 (Baldwin and Sivek [BS16]). Suppose pM,γq is a balanced sutured manifold, and ξ
is a compatible contact structure. Then the instanton contact element θpM,γ, ξq P SHIp´M,´γq
is independent of the choice of the partial open book decomposition and is well-defined up to a unit.
In particular, the non-vanishing of the instanton contact element is an invariant property for the
contact structure.

Then we prove the main theorem of this subsection.

Proof of Theorem 1.23. First, we prove the instanton contact element is homogeneous with respect
to the Z-grading of SHIp´M,´γq associated to S. From [HKM09, Theorem 1.1], any triple
pM,γ, ξq admits a contact cell decomposition. Hence there exists a Legendrian graph K, so that
pMzintNpKq, ξ|MzintNpKqq is contactomorphic to pr´1, 1s ˆF, ξ0q for some surface F with boundary
and the product contact structure ξ0. Let δ1,..., δn be a set of meridians of K, one for each edge of
K. Then we can obtain the original ξ on M from pr´1, 1s ˆ F, ξ0q by attaching contact 2-handles
along δ1, . . . , δn. As discussed above, this gives rise to a contact handle decomposition and hence a
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partial open book decomposition. From Definition 4.9, we know that

θpM,γ, ξq “ Cδn ˝ ¨ ¨ ¨ ˝ Cδ1p1q P SHIp´M,´γq,

where Cδi is the contact gluing map associated to the contact 2-handle attachment along δi.
Suppose S Ă pM,γq is an admissible surface. We can isotope S so that it intersects K transversely

and disjoint from all δi. Write

SK “ S X pMzintNpKqq.

We can consider it as a surface inside the product sutured manifold pr´1, 1s ˆ S, t1u ˆ BSq. Note
that BSKzBS are all meridians of K and, by construction, each meridian of K has two intersections
with the dividing set on BpMzintNpKqq, which is also identified with

t1u ˆ BS Ă r´1, 1s ˆ t1u ˆ S.

So SK is also admissible inside pr´1, 1s ˆ S, t1u ˆ BSq. Since

SHIp´r´1, 1s ˆ S,´t1u ˆ BSq – C,

we know that there exists i0 P Z so that

1 P SHIp´r´1, 1s ˆ S,´t1u ˆ BS, SK, i0q.

From [LY21b, Proposition 4.6], we know that all maps Cδi preserve the gradings associated to SK

and S, respectively. Thus, we conclude that

θpM,γ, ξq “ Cδn ˝ ¨ ¨ ¨ ˝ Cδ1p1q P SHIp´M,´γ, i0q.

Then we need to figure out i0. Since SHIp´r´1, 1sˆS,´t1uˆBSq is one-dimensional, the integer
i0 is determined by its graded Euler characteristic (we fix the closure to resolve the ambiguity of
˘H). By [LY21b, Proposition 4.3 and Corollary 3.42] (see also [BS20b, Theorem 3.26]), it suffices
to calculate i0 when replacing SHI by SFH . Note that the contact element of any contact struc-
ture ξ compatible with pM,γq lives in SFHp´M,´γ, sξq, where sξ is the relative spinc structure
corresponding to ξ. The formula of i0 then follows from [Hon00, Proposition 4.5]. �

4.3. Vanishing results about Giroux torsion.
Instanton contact elements share similar properties with the contact elements in SFH . To prove

the vanishing result about Giroux torsion for instanton contact element (Theorem 1.25), we need
to prove lemmas similar to Lemma 4.6 and Lemma 4.7.

The analog of Lemma 4.6 follows directly from the following proposition.

Proposition 4.11 ([Li18b, Corollary 1.4], see also [BS16, Theorem 1.2]). Consider the notations
as above. If the contact structure ξ on M 1zintM is a restriction of a contact structure ξ1 on M 1,
then we have

ΦξpθpM,γ, ξ1|M qq “ θpM 1, γ1, ξ1q P SHIp´M 1,´γ1q.

Corollary 4.12. Let pY, ξq be a closed contact 3-manifold and N Ă Y be a compact submanifold
(without any closed components) with convex boundary and dividing set Γ. If θpN,Γ, ξ|N q “ 0, then
θpY, ξq “ 0.

The following proposition is the analog of Lemma 4.7.

Proposition 4.13. The instanton contact elements θpN˚,Γ˚, ζ
`
1 q and θpN˚,Γ˚, ζ

´
1 q vanish.
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Proof. Since instanton contact elements share most properties with contact elements, we can apply
the proof of Lemma 4.7 with mild changes. We sketch the proof and point out the main difference.
For simplicity, we only consider θpN˚,Γ˚, ζ

`
1 q. The proof for θpN˚,Γ˚, ζ

´
1 q is almost identical.

Take a copy Tε “ T 2 ˆ tεu Ă intN˚ with dividing set consisting two curves of slope 8. Let L
be a Legendrian ruling curve on Tε with slope ´1 (c.f. Remark 4.5). The Legendrian curve L has
twisting number ´1 with respect to the framing coming from Tε. Let pN 1,Γ1, pζ`

1 q1q be obtained
from pN˚,Γ˚, ζ

`
1 q by a contact p`1q-surgery along L. By [BS16, Theorem 4.6], the cobordism

map Φ corresponding to the contact p`1q-surgery sending θpN˚,Γ˚, ζ
`
1 q to θppN 1,Γ1, pζ`

1 q1qq “ 0.
By [GHVHM08, Lemma 7], the resulting contact structure pζ`

1 q1 is overtwisted. Hence by [BS16,
Theorem 1.3], we have θppN 1,Γ1, pζ`

1 q1qq “ 0. It remains to show Φ is injective (at least on the
subspace generated by θpN˚,Γ˚, ζ

`
1 q.

Write pN˚,Γ˚, ζ
`
0 q for N0. In the proof of Lemma 4.7, by considering the relative spinc structure,

the authors of [GHVHM08] showed that cpN˚,Γ˚, ζ
`
0 q and cpN˚,Γ˚, ζ

`
1 q lie in the same F2 summand

of SFHp´N˚,´Γ˚q – F4
2 (we replace Z-summand by F2 summand for the naturality issue, c.f.

Remark 4.2). The contact structure ζ`
0 and the contact structure pζ`

0 q1 after the contact p`1q-
surgery along L can be embedded into S3 and S1 ˆ S2 with standard tight contact structures,
respectively, which are both Stein fillable. Then both cpN˚,Γ˚, ζ

`
0 q and cpN 1,Γ1, pζ`

0 q1q are non-
vanishing. Thus, the map Φ is injective on the F2 summand generated by cpN˚,Γ˚, ζ

`
0 q.

For sutured instanton homology, the analog of the (nontorsion) relative spinc decomposition is
the decomposition associated to admissible surfaces, constructed in [GL19, Li19]. We can use two
annuli

A0 “ S1 ˆ tptu ˆ I, A1 “ tptu ˆ S1 ˆ I Ă T 2 ˆ I

to construct the decomposition, where the S1 factors corresponding to curves of slopes 8 and 0
parallel to the dividing sets, respectively. Since |BAiXΓ˚| “ 2 for i “ 0, 1, by [LY20, Theorem 2.20]
there are only two nontrivial gradings for Ai, corresponding to the sutured manifold decomposition
along Ai and ´Ai. It is straightforward to check that sutured manifold decomposition along
˘A0 Y ˘A1 gives a 3-ball with a connected suture, whose SHI is 1-dimensional. Thus,

dimC SHIp´N˚,´Γ˚q “ 4.

By Proposition 1.23, we know that θpN˚,Γ˚, ζ
`
1 q and θpN˚,Γ˚, ζ

`
0 q live in the same grading.

Since SHI is 1-dimensional in any nontrivial grading, the elements θpN˚,Γ˚, ζ
`
1 q and θpN˚,Γ˚, ζ

`
0 q

are linear dependent. By [BS16, Corollary 1.6] and the Stein fillablility, both θpN˚,Γ˚, ζ
`
0 q and

θpN 1,Γ1, pζ`
0 q1q are non-vanishing. Then Φ is injective on the subspace generated by θpN˚,Γ˚, ζ

`
0 q,

and ΦpθpN˚,Γ˚, ζ
`
1 qq “ 0 implies θpN˚,Γ˚, ζ

`
1 q “ 0.

�

Proof of Theorem 1.25. This follows from Lemma 4.4, Corollary 4.12, and Proposition 4.13. Note
that Lemma 4.4 is only about contact topology, so we can apply it without change. �

4.4. Vanishing results about cobordism maps.
Suppose pM,γq Ă pM 1, γ1q is a proper inclusion of balanced sutured manifolds and suppose ξ is

a contact strucutre compatible with pM 1zintM,γ1 Y p´γqq. By Corollary 4.12, if

θpM 1zintM,γ1 Y p´γq, ξq “ 0,

then the contact gluing map Φξ vanishes on the subspace of SHIp´M,´γq generated by instanton
contact elements. Indeed, we can prove a stronger result by the functoriality of Φξ. The proof of
the following proposition is due to Ian Zemke.
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Proposition 4.14. Suppose pM,γq Ă pM 1, γ1q is a proper inclusion of balanced sutured manifolds
and suppose ξ is a contact strucutre compatible with

pM0, γ0q :“ pM 1zintM,γ1 Y p´γqq.

If the contact element θpM0, γ0, ξq vanishes, then the map Φξ vanishes on SHIp´M,´γq.

Proof. We have inclusions

pM,γq Ă pM,γq \ pM0, γ0q Ă pM 1, γ1q,

where \ denotes the disjoint union. The manifold

M 1zintpM \M0q

is contactomorphic to BMˆI. Let ξ0 be the product contact structure on BMˆI. By the connected
sum formula [Li18a, Section 1.8], we have

SHIp´M \ p´M0q,´γ \ p´γ0qq – SHIp´M,´γq b SHIp´M0,´γ0q b C2.

By functoriality, the map Φξ is the composition of the following maps

SHIp´M,´γq ÑSHIp´M,´γq b SHIp´M0,´γ0q b C2 Ñ SHIp´M 1,´γ1q

x ÞÑ xb θpM0, γ0, ξq b y0 ÞÑ Φξ0pxb θpM0, γ0, ξqq,

where y0 is a canonical element in C2. If θpM0, γ0, ξq “ 0, then Φξ “ 0. �

Remark 4.15. For a general balanced sutured manifold pM,γq, instanton contact elements do not
generate SHIp´M,´γq because the number of tight contact structures compatible with pM,γq is less
than dimC SHIpM,γq. See [Li19, Section 4.3] and [Hon00] for discussion about contact structures
on the solid torus.

The following vanishing result is used in the rest of the paper.

Corollary 4.16. Suppose pM,γq Ă pM 1, γ1q is a proper inclusion of balanced sutured manifolds. If

pM 1zintM,γ1 Y p´γq, ξq “ pN˚,Γ˚, ζ
`
1 q or pN˚,Γ˚, ζ

´
1 q

defined in Subsection 4.1, then Φξ “ 0.

Proof. This follows from Proposition 4.13 and Proposition 4.14 �

5. Instanton L-space knots

In this section, we study the instanton knot homology of an instanton L-space knot K Ă Y . In
particular, we prove Theorem 1.9, Theorem 1.11, and Theorem 1.17. For technical reasons, We
only deal with the case H1pY pKqq – Z.

5.1. The dimension in each grading.
In this subsection, we prove the following theorem. The main input is the large surgery formula

and the vanishing result Corollary 4.16.

Theorem 5.1. Suppose Y is an integral homology sphere with I7pY q – C. Suppose K Ă Y is a
knot and S is the Seifert surface of K. If there is a positive integer n so that Y´npKq is an instanton
L-space, then for any i P Z, we have

dimC KHIp´Y,K, S, iq ď 1.
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Since Y is an integral homology sphere, K is always null-homologous and µ̂ “ µ, λ̂ “ λ in
Subsection 3.2. By Definition 3.5, we have pq, pq “ p1, 0q and pq0, p0q “ p0, 1q. Then we have

pΓµ “ Γµ “ γµ, pΓn “ Γn “ γλ´nµ.

Note that in the proof of Theorem 3.23, an auxiliary slope µ̂1 “ nµ̂ ´ λ̂ is used. Here we set
µ̂1 “ nµ ´ λ. Since n is not fixed, this slope is also not fixed.

For simplicity, we write γpx,yq for γxλ`yµ in Definition 3.5. Also, we omit S in the notation
SHIp´Y pKq, γ, S, iq for any γ.

Then we make the following definition.

Definition 5.2. For any integers n and i with |i| ď gpKq, define

Tn,i “ SHIp´Y pKq,´Γn, i` r
n´ 1

2
sq,

Bn,i “ SHIp´Y pKq,´Γn, i´ 1 ` r´
n´ 1

2
sq.

For i ą gpKq and any n, define Tn,i “ 0. For i ă ´gpKq and any n, define Bn,i “ 0.

Remark 5.3. The notations ‘T’ and ‘B’ mean ‘top’ and ‘bottom’. If we use the notations after the
diagram (3.8) and suppose g “ gpKq, then for any integers n and i with |i| ď gpKq, we have

Tn,i “ pΓi,`n and Bn,i “ pΓi,´n´1.

By Lemma 3.13, we have

ψn´,n`1 : Tn,i
–

ÝÑ Tn`1,i and ψ`,n`1 : Bn,i
–
ÝÑ Bn`1,i

for n ě 2gpKq ` 1 and |i| ď gpKq.

The following proposition follows from the large surgery formula.

Proposition 5.4. Suppose Y is an integral homology sphere with I7pY q – C. Suppose K Ă Y is
a knot. Suppose n is an integer so that n ě 2gpKq ` 1 and Y´npKq is an instanton L-space. Then
we have the following.

SHIp´Y pKq,´γp2,1´2nq, iq –

$
’&
’%

Tn,i´n`1 n ´ g ď i ď n´ 1 ` g

C ´n` g ` 1 ď i ď n´ g ´ 1

Bn,i`n´1 ´n` 1 ´ g ď i ď ´n` g

Proof. The isomorphism of the top and bottom 2g gradings of SHIp´Y pKq,´γp2,1´2nqq follows from
applying Lemma 3.13 to µ̂1. Since Y´npKq is an instanton L-space, by (1.3), the manifold ´Y´npKq
is also an instanton L-space. The isomorphism of the middle gradings follows from Proposition 3.18,
Lemma 3.14, and Theorem 1.22. �

Note that in the proof of Theorem 3.23 (more precisely, in the triangle (3.15)), we have a map

ψ
µ
´,0pµ̂1q from the space associated to pΓn to the space associated to pΓn´1. We write this map

as ψn´,n´1. We also write ψ2n´1
´,n and ψn´1

´,2n´1 for ψ1
´,µpµ̂1q and ψ0

´,1pµ̂1q in (3.15)), respectively.

Similarly we write ψn`,n´1, ψ
2n´1
`,n , and ψn´1

`,2n´1 for maps in the positive bypass triangle. We abuse
notation so that bypass maps also denote their restrictions on a single grading. Then the following
proposition follows from the vanishing results established in Section 4.
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Proposition 5.5. Suppose K Ă Y is a null homologous knot. For any integer n P Z with n ě
2gpKq ` 1 and any integer i with |i| ď gpKq, we have

ψn`1
`,n ˝ ψn`2

´,n`1 “ 0 : Tn`2,i Ñ Tn,i

and

ψn`1
´,n ˝ ψn`2

`,n`1 “ 0 : Bn`2,i Ñ Bn,i.

Proof. By Remark 5.3, it suffices to prove

ΨT :“ ψn`2
´,n`3 ˝ ψn`1

´,n`2 ˝ ψn´,n`1 ˝ ψn`1
`,n ˝ ψn`2

´,n`1 “ 0 : Tn`2,i Ñ Tn`3,i

and

ΨB :“ ψn`2
`,n`3 ˝ ψn`1

`,n`2 ˝ ψn`,n`1 ˝ ψn`1
´,n ˝ ψn`2

`,n`1 “ 0 : Bn`2,i Ñ Bn`3,i.

By classification of tight contact structures on T 2 ˆ I [Hon00], we know that the contact structures
corresponding to ΨT and ΨB are contactomorphic to either pN˚,Γ˚, ζ

`
1 q or pN˚,Γ˚, ζ

´
1 q defined in

Subsection 4.1. Then the lemma follows from Corollary 4.16. �

Proposition 5.6. Suppose Y is an integral homology sphere with I7pY q – C. Suppose K Ă Y is
a knot. Suppose n0 be a positive integer so that Y´n0

pKq is an instanton L-space. Then for any
integer n so that n ą n0, Y´npKq is also an instanton L-space.

Proof. This proposition follows immediately from χpI7pY´npKqq “ |H1pY´npKqq|, the equation

|H1pY´n´1pKqq| “ |H1pY´npKqq| ` |H1pY q|,

and the following surgery exact triangle ([BS18b, Section 4.2], see also [Sca15])

I7pY´n´1pKqq // I7pY´npKqq

yyrrr
rr
rr
rr
r

I7pY q

ff▼▼▼▼▼▼▼▼▼▼

�

By Proposition 5.4 and Proposition 5.5, the proof of Theorem 5.1 follows from similar algebraic
lemmas in [OS05b, Section 3]. We reprove them in our setting.

Lemma 5.7. Suppose Y is an integral homology sphere with I7pY q – C. Suppose K Ă Y is a knot.
Suppose n0 be a positive integer so that Y´n0

pKq is an instanton L-space. Suppose further that for
a large enough integer n and some integer m with |m| ď gpKq, we have Tn,m`1 “ 0. Then one of
the following two cases happens.

(1) KHIp´Y,K,mq – C and Bn,m´1 “ 0,
(2) KHIp´Y,K,mq “ 0 and Tn,m “ 0.

Proof. By Proposition 5.6, we can take an arbitrary large enough integer n, since they are all
L-space surgery slopes. From Proposition 3.10, we have the following exact triangle

Tn´1,m`1
// Tn,m

xx♣♣♣
♣♣
♣♣
♣♣
♣♣

KHIp´Y,K,mq

ggPPPPPPPPPPP
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From Remark 5.3 and the assumption Tn,m`1 “ 0, we know that

Tn´1,m`1 – Tn,m`1 “ 0 and Bn,m´1 – Bn´1,m´1.

Hence there exists some k P N so that

Tn,m – KHIp´Y,K,mq – Ck.

Also from Proposition 3.10, we have the following exact diagram

SHIp´Y pKq,´γp2,1´2nq,mq

��
Tn,m

ψ
n,m
´,n´1

��
SHIp´Y pKq,´γp2,3´2nq,m´ 1q

ψ
2n´3,m´1

`,n´1 // Bn´1,m´1

ψ
n´1,m´1

`,n´2 // Tn´2,m

where ψn,m´,n´1 is the map ψn´,n´1 restricted to the graded part Tn,m and other notations are defined

similarly. Since |m| ď gpKq, Proposition 5.4 implies that

SHIp´Y pKq,´γp2,1´2nq,mq – SHIp´Y pKq,´γp2,3´2nq,m ´ 1q – C.

Hence the above diagram can be re-write as

(5.1) C

��
Tn,m – Ck

ψ
n,m

´,n´1

��
C

ψ
2n´3,m´1

`,n´1 // Bn´1,m´1

ψ
n´1,m´1

`,n´2 // Tn´2,m – Ck

We consider the following two cases.
Case 1. ψ2n´3,m´1

`,n´1 is trivial. Then from the exactness of the horizontal sequence in (5.1), we

know that Bn´1,m´1 – Ck´1 and ψn´1,m´1
`,n´2 is injective. Also, we conclude from the exactness of

the vertical sequence in (5.1) that ψn,m´,n´1 is surjective. However, from Proposition 5.5 we know
that

ψ
n´1,m´1
`,n´2 ˝ ψn,m´,n´1 “ 0.

Hence the only possibility is that k “ 1, and this concludes that Tn,m – KHIp´Y,K,mq – C, and
Bn,m´1 – Bn´1,m´1 “ 0, which is the first case in the statement of the lemma.

Case 2. ψ2n´3,m´1
`,n´1 is nontrivial. Then from the exactness of the horizontal sequence in (5.1),

we know that Bn´1,m´1 – Ck`1 and ψ
n´1,m´1
`,n´2 is surjective. From the above discussion and the
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bypass exact triangle from Proposition 3.10, we have another exact diagram

(5.2) SHIp´Y pKq,´γp2,5´2nq,mq – C

��
Bn´1,m´1 – Ck`1

ψ
n´1,m´1

`,n´2 // Tn´2,m – Ck

ψ
n´2,m
´,n´3

��
Bn´3,m´1 – Ck`1

The exactness of the vertical sequence in (5.2) implies that the map ψn´2,m
´,n´3 is injective. However,

from Proposition 5.5, we have

ψ
n´2,m
´,n´3 ˝ ψn´1,m´1

`,n´2 “ 0.

Hence the only possibility is that k “ 0. Thus, we conclude that Tn,m – KHIp´Y,K,mq “ 0, which
is the second case in in the statement of the lemma. �

Lemma 5.8. Suppose Y is an integral homology sphere with I7pY q – C. Suppose K Ă Y is a knot.
Suppose n0 be a positive integer so that Y´n0

pKq is an instanton L-space. Suppose further that for
a large enough integer n and some integer m with |m| ď gpKq, we have Bn,m “ 0. then one of the
following two cases happens.

(1) KHIp´Y,K,mq – C and Tn,m “ 0,
(2) KHIp´Y,K,mq “ 0 and Bn,m´1 “ 0.

Proof. The proof is similar to that of Lemma 5.7. From Proposition 3.10, we have the following
triangle

Bn´1,m´1
// Bn,m

xx♣♣♣
♣♣
♣♣
♣♣
♣♣

KHIp´Y,K,mq

hhPPPPPPPPPPPP

Hence there exists some k P N so that

Bn´1,m´1 – KHIp´Y,K,mq – Ck.

Also from Proposition 3.10, we have the following exact diagram

(5.3) C

��
Tn,m

ψ
n,m

´,n´1

��

C

��
C

ψ
2n´3,m´1

`,n´1 // Bn´1,m´1 – Ck
ψ

n´1,m´1

`,n´2 // Tn´2,m

ψ
n´2,m´1

´,n´3

��
Bn´3,m´1 – Ck

We consider the following two cases.
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Case 1. ψ2n´3,m´1
`,n´1 is trivial. Then from the exactness of the horizontal sequence in (5.3), we

know that Tn´2,m – Ck´1 and ψn´1,m´1
`,n´2 is surjective. Also, we conclude from the exactness of the

second vertical sequence in (5.3) that ψn´2,m
´,n´3 is injective. However, from Proposition 5.5 we know

that

ψ
n´2,m
´,n´3 ˝ ψn´1,m´1

`,n´2 “ 0.

Hence the only possibility is that k “ 1. Hence we conclude that KHIp´Y,K,mq – C and Tn,m –
Tn´2,m “ 0, which is the first case in the statement of the lemma.

Case 2. ψ2n´3,m´1
`,n´1 is nontrivial. Then from the exactness of the horizontal sequence in (5.3), we

know that Tn,m – Tn´2,m – Ck`1 and ψn´1,m´1
`,n´2 is injective. Also, we conclude from the exactness

of the first vertical sequence that ψn,m´,n´1 is surjective. However, from Proposition 5.5 we know that

ψ
n´1,m´1
`,n´2 ˝ ψn,m´,n´1 “ 0.

Hence the only possibility is that k “ 0, and this concludes that

Bn,m´1 – Bn´1,m´1 – KHIp´Y,K,mq – Ck,

which is the second case in the statement of the lemma. �

Proof of Theorem 5.1. By Definition 5.2 and Lemma 3.8, we know that

Tn,gpKq`1 “ 0 and KHIp´Y,K, gpKq ` 1q “ 0.

We apply an induction that decreases the integer i: assuming that for i` 1, we have

KHIp´Y,K, i` 1q – C or 0

and either Tn,i`1 “ 0 or Bn,pi`1q´1 “ 0, then we want to prove the same results for i. When
Tn,i`1 “ 0, from Lemma 5.7, we have either KHIp´Y,K, iq – C and Bn,i´1 “ 0 or KHIp´Y,K, iq “
0 and Tn,i “ 0. When Bn,pi`1q´1 “ 0, from Lemma 5.8, we have either KHIp´Y,K, iq – C and
Tn,i “ 0 or KHIp´Y,K, iq “ 0 and Bn,i´1 “ 0. Hence, the inductive step is completed and we
conclude that

KHIp´Y,K, iq – C or 0.

for all i P Z so that |i| ď gpKq. From Lemma 3.8, we know that

KHIp´Y,K, iq – 0

for all i P Z with |i| ą gpKq. Hence we conclude the proof of Theorem 5.1. �

5.2. Coherent chains.
In this subsection, we prove instanton analog of [RR17, Lemma 3.2] with more assumptions.

First, we introduce the analog of [RR17, Definition 3.1] in instanton theory.

Definition 5.9. Suppose K is a knot in a rational homology sphere Y and suppose µ̂ is the
meridian of K. Suppose the knot complement Y pKq satisfying H1pY pKqq – Z so that we can
identify rµ̂s P H1pY pKqq as an integer q. Indeed, if a Seifert surface S of K is chosen, we can set
q “ S ¨ µ̂. For any integer s and its image rss P Zq, define

KHIp´Y,K, rssq :“
à
kPZ

KHIp´Y,K, S, s` kqq.

It is called a positive chain if it is generated by elements

x1, . . . , xl, y1, . . . , yl´1,
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each of which lives in a single grading associated to S and a single Z2-grading, and the differentials
d` and d´ satisfy

d´pyiq
.
“ xi`1, d`pyiq

.
“ xi, and d´pxiq “ d`pxiq “ 0 for all i,

where
.
“ means equal up to multiplication by a unit. The space KHIp´Y,K, rssq is called a negative

chain if there exist similar generators so that

d´pxiq
.

“ yi, d`pxiq
.

“ yi´1, and d´pyiq “ d`pyiq “ 0 for all i.

We call KHIp´Y,Kq consists of positive chains if KHIp´Y,K, rssq is a positive chain for any
rss P Zq and consists of negative chains if KHIp´Y,K, rssq is a negative chain for any rss P Zq.
We call KHIp´Y,Kq consists of coherent chains if KHIp´Y,Kq either consists of postive chains
or consists of negative chains

Remark 5.10. By Definition 5.9, the space KHIp´Y,K, rssq is both a positive chain and a nega-
tive chain if and only if dimC KHIp´Y,K, rssq “ 1. By the proof of Proposition 3.33, the space
KHIp´Y,Kq consists of positive chains if and only if KHIpY,Kq consists of negative chains.

The main theorem in this subsection is the following.

Theorem 5.11. Suppose K Ă Y is a knot as in Definition 5.9. Note that H1pY pKqq – Z. Suppose

Y is an instanton L-space and suppose n P N`. Suppose the basis pµ̂, λ̂q of BY pKq is from Definition
3.5. If Y´npKq is an instanton L-space, then KHIp´Y,Kq consists of positive chains. If YnpKq is
an instanton L-space, then KHIp´Y,Kq consists of negative chains.

For simplicity, we only provide details of the proof for a special case of Theorem 5.11. The proof
for the general case is similar. The main input is Theorem 5.1.

Definition 5.12. We adapt notations in Subsection 5.1 and Construction 3.21. For any integer s,
suppose B`

ěs is the subcomplex of B`
s with the underlying space

à
kěs

SHIp´Y pKq,´pΓµ, S, s` kqq

and suppose B´
ăs is the subcomplex of B´

s with the underlying space
à
kăs

SHIp´Y pKq,´pΓµ, S, s` kqq.

Let HpB`
ěsq and HpB´

ăsq be the corresponding homologies.

Lemma 5.13. For any integers n and i with |i| ď gpKq, we have

Tn,i – HpB`
ěiq and Bn,i – HpB´

ăiq.

Proof. This follows from Remark 5.3, equations (3.9) and (3.10), and Theorem 2.4. �

Theorem 5.14. Suppose K is a knot in an integral homology sphere Y with dimC I
7pY q “ 1. If

there is a positive integer n so that Y´npKq is an instanton L-space, then KHIp´Y,Kq consists of
positive chains in the sense of Definition 5.9.

Proof. By Theorem 5.1, for any integer i, we have

dimC KHIp´Y,K, iq ď 1.

Then we have integers
n1 ą n2 ą ¨ ¨ ¨ ą nk
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so that

dimC KHIp´Y,K, iq “

#
1 if i “ nj for j P r0, ks;

0 else.

Suppose xi is the generator of KHIp´Y,K, n2i´1q and yi is the generator of KHIp´Y,K, n2iq. We
verify that those xi and yi satisfy the positive chain condition, i.e. for any integer i, we have

(5.4) d´pyiq
.

“ xi`1, d`pyiq
.

“ xi, and d´pxiq “ d`pxiq “ 0,

where
.

“ means the equation holds up to multiplication by a unit. We prove this condition by
induction. We only consider the condition about the differential d`. The proof for d´ is similar.
The gradings in the following arguments mean the gradings associated to the Seifert surface S. Note
that by the proof of Theorem 5.1, we have

Tn,n2l
“ Bn,n2l´1`1 “ 0 for any l.

Hence by Lemma 5.13, we have

Tn,i – HpB`
ěn2l

q “ HpB´
ă2l´1q.

First, suppose i “ 1. Since x1 lives in the top grading of KHIp´Y,Kq and d` increases the
Z-grading, we must have d`px1q “ 0. Since HpB`

ěn2
q “ 0 and there are only two generators x1 and

y1 in B`
ěn2

, we must have d`py1q
.

“ x1.
Then we assume the condition (5.4) holds for i ď l ´ 1 and prove it also holds for i “ l. Since

HpB`
ěn2l

q “ HpB`
ěn2l´2

q “ 0,

we know the quotient complex B`
ěn2l

{B`
ěn2l´2

also has trivial homology. Since it is generated by xl
and yl, the coefficient of d`pylq about xl must be nontrivial. Hence yl is not in the pn2l´1 ´n2l`1q-
page of the spectral squence associated to d`. Since other generators x1, . . . , xl´1, y1, . . . , yl´1 have
smaller gradings than xl, we know by construction of d` in Construction 2.6 that the coefficients of
d`pylq about those generators are zeros. Hence d`pylq

.
“ xl. Since d` ˝d` “ 0, we have d`pxlq “ 0.

Thus, we prove the condition holds for i “ l.
�

Proof of Theorem 5.11. If Y´npKq is an instanton L-space, then the proof is similar to that of
Theorem 5.14. To prove a generalization of Theorem 5.1, we need to remove the integral homology
sphere assumption in Proposition 3.18 and Proposition 5.6. The corresponding proofs follow from
Remark 3.19 and the proof of [BGW13, Proposition 4]. If YnpKq is an instanton L-space, by Remark
5.10, we can consider the mirror knot to obtain the result. �

5.3. A graded version of Künneth formula.
In this subsection, we prove the following graded version of Künneth formula for the connected

sum of two knots.

Proposition 5.15. Suppose Y1 and Y2 are two irreducible rational homology spheres and K1 Ă Y1,
K2 Ă Y2 are two knots so that Y1pK1q and Y2pK2q are both irreducible. Suppose

pY 1,K 1q “ pY17Y2,K17K2q

is the connected sum of two knots. Then there is a minimal genus Seifert surface S of K 1 with the
following properties.

(1) There is a 2-sphere Σ Ă Y 1 intersecting the knot K 1 in two points and intersecting S in arcs.
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(2) If we cut S along S XΣ2, then S decomposes into two surfaces S1 Ă Y1 and S2 Ă Y2 so that Si
is a union of some copies of Seifert surfaces of Ki for i “ 1, 2.

(3) There is an isomorphism

(5.5) KHIpY 1,K 1, S, kq –
à
i`j“k

KHIpY1,K1, S1, iq b KHIpY2,K2, S2, jq.

Proof. Let S be a minimal genus Seifert surface of K 1 and let Σ Ă Y 1 be a 2-sphere so that Σ
intersects K 1 in two points. We can choose Σ so that

Σ X BY 1pK 1q “ µ1 Y µ2,

where µ1 and µ2 are two meridians of K 1. Write

A “ Σ X Y 1pK 1q.

From now on, we also regard S as a surface inside the knot complement Y 1pK 1q. We can isotope S
so that S intersects A transversely and S has minimal intersections with both µ1 and µ2. Now we
argue that we can further isotope S so that S intersects A in arcs. Suppose

S XA “ α1 Y ¨ ¨ ¨ Y αn Y β1 Y ¨ ¨ ¨ Y βm,

where αi are arcs and βj are closed curves. Observe that each component of Azpα1 Y ¨ ¨ ¨ Yαnq is a
disk. Then using the arguments in the proof of [Rol90, Chapter 5, Theorem A14], we could further
assume that m “ 0, i.e., S intersects A in arcs. When we cut the knot complement Y 1pK 1q along
A, we obtain the disjoint union of the knot complements Y1pK1q and Y2pK2q, and the surface S
decomposes into S1 Ă Y1pK1q and S2 Ă Y2. Note that S1 and S2 must be the union of (possibly
more than one) copies of Seifert surfaces of the corresponding knots. Then we prove the isomorphism
(5.5).

First, we prove

(5.6) KHIpY 1,K 1q – KHIpY1,K1q b KHIpY2,K2q.

To do so, we pick a meridian µ1
i of Ki for i “ 1, 2 pick suitable orientations so that pY 1pK 1q, µ1

1 Yµ1
2q

is a balanced sutured manifold. Then we can decompose it along the annulus A:

pY 1pK 1q, µ1
1 Y µ1

2q pY1pK1q, µ1 Y µ1
1q \ pY2pK2q, µ2 Y µ1

2q.

From [KM10b, Proposition 6.7], this annular decomposition leads to the isomorphism (5.6). To
study the grading behavior of this isomorphism, we sketch the construction of the isomorphism as
follows. Pick a connected oriented compact surface T so that

BT “ ´µ1 Y ´µ2.

Pick an annulus T 1 so that

BT 1 “ ´µ1
1 Y ´µ1

2.

One could think of T 1 be a copy of the annulus A.
In [KM10b, Section 7], Kronheimer and Mrowka constructed closures of

pY1pK1q, µ1 Y µ1
1q \ pY2pK2q, µ2 Y µ1

2q

as follows. First, glue r´1, 1s ˆ pT Y T 1q to Y1pK1q \ Y2pK2q using the boundary identifications as
above to obtain a pre-closure

(5.7) ĂM “ pY1pK1q \ Y2pK2qq Y r´1, 1s ˆ pT Y T 1q.
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The boundary of ĂM has two components

B ĂM “ R` YR´,

where

R˘ “ R˘pµ1 Y µ1
1q YR˘pµ2 Y µ1

2q Y t˘1u ˆ pT Y T 1q.

Second, choose an orientation preserving diffeomorphism

h : R` Ñ R´

and use h to close up ĂM and obtain a closed 3-manifold Y with a distinguishing surface R. The
pair pY,Rq is a closure of pY1pK1q, µ1 Y µ1

1q \ pY2pK2q, µ2 Y µ1
2q.

Remark 5.16. In [KM10b, Section 7], we also need to choose a simple closed curve in Y , either
transversely intersecting R at one point or is non-separating on R, to achieve the irreducibility
condition for related instanton moduli spaces. In the current proof, the choices of simple closed
curves are straightforward, so we omit them from the discussion.

Note that gluing r´1, 1s ˆ T1 to pY1pK1q, µ1 Y µ1
1q \ pY2pK2q, µ2 Y µ1

2q is the inverse operation
of decomposing pY 1pK 1q, µ1

1 Y µ1
2q along the annulus A. As a result, pY,Rq is clearly a closure of

pY 1pK 1q, µ1
1 Yµ1

2q as well. The identification of the closures induces the isomorphism in (5.6). More
precisely, we can pick the surface T with large enough genus and pick a simple closed curve θ Ă T

so that θ separates T into two parts, both of large enough genus, and with ´µ1
1 and ´µ1

2 sitting in
different parts. We also pick a core θ1 of the annulus T 1. When choosing the gluing diffeomorphism
h : R` Ñ R´, we can choose one so that

(5.8) hpt1u ˆ θq “ t´1u ˆ θ, and hpt1u ˆ θ1q “ t´1u ˆ θ1.

Hence, inside Y , there are two tori S1 ˆ θ and S1 ˆ θ1. If we cut Y open along these two tori
and reglue, then we obtain two connected 3-manifolds pY1, R1q and pY2, R2q, which are closures of
pY1pK1q, µ1 Y µ1

1q and pY2pK2q, µ2 Y µ1
2q, respectively. The Floer’s excision theorem in [KM10b,

Section 7.3] then provide the desired isomorphism.
To study the gradings, recall that

S XA “ α1 Y ¨ ¨ ¨ Y αn

where αi are arcs connecting µ1 to µ2 on A. We can also regard those arcs as on the annulus T 1.
Assume that BS intersects each of µ1

1 and µ1
2 in n points as well. Note that we have assumed that

T has a large enough genus. Then there are arcs δ1,..., δn so that the following holds. Recall we
have chosen θ Ă T in previous above discussions.

(1) We have Bpδ1 Y ¨ ¨ ¨ Y δnq “ S X pµ1
1 Y µ1

2q.
(2) For i “ 1, .., n, the arc δi intersects θ1 transversely once.
(3) The surface Szpδ1 Y ¨ ¨ ¨ Y δn Y θ1q also has two components.

(4) Let rS “ S Y r´1, 1s ˆ pα1 Y ¨ ¨ ¨ Yαnq be a properly embedded surface inside the pre-closure ĂM
as in (5.7), then we can choose a gluing diffeomorphism h : R` Ñ R´ satisfying the condition
(5.8) and the following extra condition

hpB rS XR`q “ B rS XR´.

Hence, the surface S extends to a closed surface S̄ Ă Y that induces the desired Z-grading on
KHIpY 1,K 1q. When we cut Y open along S1 ˆ θ and S1 ˆ θ1 and reglue, the surface S̄ is also cut
and reglued to form two closed surfaces S̄1 Ă Y1 and S̄2 Ă Y2. They are the extensions of the Seifert
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surface S1 of K1 and the Seifert surface S2 of K2 in the corresponding closures. Hence the Floer’s
excision theorem in [KM10b, Section 7.3] provides desired the isomorphism (5.5). �

5.4. Proofs of theorems in the introduction.
In this subsection, we prove Theorem 1.9, Theorem 1.11, and Theorem 1.17.

Proof of Theorem 1.9. By Remark 1.8, we may assume S3
npKq is an instanton L-space for some

n P N`. Then by Theorem 5.11, the space KHIpS3,Kq consists of coherent chains. Then arguments
about KHIpS3,K, S, iq follow from Definition 5.9 and Proposition 3.37.

To prove K is a prime knot, we can apply the proof of [BVV18, Corollary 1.4] to KHI, replacing
[BVV18, Theorem 1.1] by [BS18a, Theorem 1.7]. Note that we need the graded version of Künneth
formula for KHI in Proposition 5.15. �

Proof of Theorem 1.17. By (1.3), a knot K Ă Y is instanton Floer simple if and only if the mirror
knot p´Y,Kq is instanton Floer simple. Note that by spectral sequences in Theorem 3.20, we always
have

dimC KHIp´Y,K, rssq ě dimC I
7p´Y, rssq ě 1.

By Remark 5.10, we know that p´Y,Kq is instanton Floer simple if and only if the space KHIp´Y,Kq
both consists of positive chains and consists of negative chains.

By Theorem 3.25 and Theorem 3.32, if K is instanton Floer simple, then for any large integer
n, the manifolds YnpKq and Y´npKq are both instanton L-spaces. By the similar argument in the
proof of [BGW13, Proposition 4], the manifold YrpKq is an instanton L-space for any |r| ě n.

Conversely, if for any r with |r| sufficiently large, the manifold YrpKq is an instanton L-space,
then for any large integer n, the manifolds YnpKq and Y´npKq are both instanton L-spaces. By
Proposition 5.11, the space KHIp´Y,Kq both consists of positive chains and consists of negative
chains. Hence K is an instanton Floer simple knot. �

Finally, we prove Theorem 1.11. Suppose K Ă Y is a knot with H1pY pKqq – Z and suppose µ̂

is the meridian of K with q “P“ S ¨ µ̂, where S is the Seifert surface of K. We choose a basis pµ̂, λ̂q
of H1pBY pKqq as in Definition 3.5 and identify the slope with rational numbers. Then we have the
following lemma.

Lemma 5.17 ([RR17, Lemma 2.7]). Consider the setting as above. If r “ u{v, the manifold
YrpKq is obtained from Y 1 “ Y 7Lpv,´uq by some integral surgery on K 1 “ K7Kpv,´u, 1q, where
Kpv,´u, 1q is the unique knot in Lpv,´uq so that the complement is diffeomorphic to S1 ˆ D2.
Moreover, we have

H1pY 1pK 1qq – H1pY pKqq – H1pS1 ˆD2q{pµ̂, µ1q,

where µ1 is the meridian of Kpv,´u, 1q. Hence H1pY 1pK 1qq – Z if and only if gcdpq, vq “ 1.

Proof of Theorem 1.11. By [RR17, Lemma 3.2], for a Heegaard Floer L-space knot K Ă Y , the

space {HFKpY,Kq satisfies similar coherent chain condition as in Definition 5.9. Consider the Z-

grading on {HFKpY,Kq induced by pairing the first Chern class of the spinc structure with S. Since
H1pY pKqq – Z, the Z-grading encodes all information in the spinc decomposition and the coherent
chain condition implies

dimF2

{HFKpY,K, S, iq ď 1.

Hence the dimension is determined by the graded Euler characteristic.
If v “ 1 and r P Z, then by similar discussion as above, Theorem 5.11 implies that KHIpY,K, S, iq

is determined by the graded Euler characteristic. Hence the theorem follows from (1.4).
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If v ‰ 1, then by Lemma 5.17, we can apply the proof for v “ 1 to

pY 1,K 1q “ pY 7Lpv,´uq,K7Kpv,´u, 1qq.

Note that simple knots are instanton Floer simple knots by [LY20, Proposition 1.7]. Then the

theorem follows from the graded Künneth formula for KHI (Proposition 5.15) and {HFK ([OS11,
Section 5]). We do not need to consider the irreducible condition due to the convention in Subsection
3.2. �

6. Dehn surgeries along genus-one knots

In this section, we study the framed instanton Floer homology of Dehn surgeries along knots
that satisfies the following conditions:

(1) The genus of the knot is 1, i.e., gpKq “ 1.
(2) The instanton knot homology of the knot is determined by the Alexander polynomial, i.e.,

∆Kptq “ a1t` a0 ` a´1 and dimC KHIpS3,K, iq “ |ai| for i P Z.

Such knots include all genus-one Khovanov-thin knots (in particular, genus-one quasi-alternating
knots [KM11, Corollary 1.6]). In Table 1, we list all genus-one alternating knots with crossings
ď 12 (they are also all known examples of genus-one quasi-alternating knots). The data are from
KnotInfo [LM21]. Note that we normalize the Alexander polynomial by (1.1). The first knot
for each crossing number in the table is a twisted knot. The reader can compare this table with
examples in [BS20a].

Table 1. genus-one alternating knots with crossings ď 12

No. Name 4-ball genus Signature Two-bridge notation Alexander polynomial
1 31 1 ´2 3{1 t´ 1 ` t´1

2 41 1 0 5{2 ´t` 3 ´ t´1

3 52 1 ´2 7{3 2t´ 3 ` 2t´1

4 61 0 0 9{7 ´2t` 5 ´ 2t´1

5 72 1 ´2 11{5 3t´ 5 ` 3t´1

6 74 1 ´2 15{11 4t´ 7 ` 4t´1

7 81 1 0 13{11 ´3t` 7 ´ 3t´1

8 83 1 0 17{4 ´4t` 9 ´ 4t´1

9 92 1 ´2 15{7 4t´ 7 ` 4t´1

10 95 1 ´2 23{17 6t´ 11 ` 6t´1

11 935 1 ´2 7t´ 13 ` 7t´1

12 101 1 0 17{15 ´4t` 9 ´ 4t´1

13 103 0 0 25{6 ´6t` 13 ´ 6t´1

14 11a247 1 ´2 19{17 5t´ 9 ` 5t´1

15 11a343 1 ´2 31{27 8t´ 15 ` 8t´1

16 11a362 1 ´2 10t´ 19 ` 10t´1

17 11a363 1 ´2 35{29 9t´ 17 ` 9t´1

18 12a803 1 0 21{2 ´5t` 11 ´ 5t´1

19 12a1166 1 0 33{4 ´8t` 17 ´ 8t´1

20 12a1287 1 0 37{6 ´9t` 19 ´ 9t´1

From conditions in (1.1), there are two possibilities of the Alexander polynomial:



SU(2) REPRESENTATIONS AND A LARGE SURGERY FORMULA 47

(i) ∆Kptq “ at´ p2a´ 1q ` at´1 for some a P N`;
(ii) ∆Kptq “ ´at` p2a` 1q ´ at´1 for some a P N`.

We treat these two cases separately in the following two subsections.

Convention. For simplicity, we write KHIpKq for KHIp´S3,Kq and KHIpK, iq for KHIp´S3,K, S, iq,
where S is a Seifert surface of K. Recall that we write K̄ for the mirror knot of K. We will write
HpCq for the homology of a complex C and write f˚ for the induced map between homologies.

Recall the results from Section 3.5. In this case, we have As “ pKHIpKq, dsq for any s, and

dspxq “

$
’&
’%

d`pxq grpxq ą s,

d`pxq ` d´pxq grpxq “ s,

d´pxq grpxq ă s.

where grpxq is the grading of x P KHIpKq associated to the Seifert surface. We can further decom-
pose the differentials as follows:

d` “
ÿ

iăj

dij and d´ “
ÿ

iąj

dij , where d
i
j : KHIpK, iq Ñ KHIpK, jq.

Since gpKq “ 1, the ´3-surgery is a large surgery in the sense of Theorem 1.22. Hence we have

I7p´S3
´3pKqq –

1à
s“´1

HpAs, dsq,

where
HpA1, d1q – HpKHIpKq, d´q – I7p´S3q – C,

and
HpA´1, d´1q – HpKHIpKq, d`q – I7p´S3q – C.

Hence we know that

(6.1) dimC I
7p´S3

´3pKqq “ 2 ` dimCHpA0, d0q.

Since a1 “ a´1, by the graded Euler characteristic of KHI [Lim09, KM10a], we know that that
the parities of KHIpK, 1q and KHIpK,´1q are the same under the Z2 grading. By Proposition 3.37,
we know that there is no d1´1 or d´1

1 differentials. Hence, we know that

d0 “ d01 ` d0´1.

6.1. The case of p2a` 1q.
In this case we know that

KHIpK, iq –

$
’&
’%

Ca i “ ˘1,

C2a`1 i “ 0,

0 else.

We have the following.

Lemma 6.1. The differential
d10 : KHIpK, 1q Ñ KHIpK, 0q

is injective and the differential

d0´1 : KHIpK, 0q Ñ KHIpK,´1q

is surjective.
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Proof. Since

dimC Kerpd0´1q ě dimC KHIpK, 0q ´ dimCKHIpK,´1q “ a ` 1

and

dimC Impd10q ď dimC KHIpK, 1q “ a,

we know

1 ď dimCpKerpd0´1q{ Impd10qq ď dimCHpA1, d1q “ 1.

We conclude that

dimC Kerpd0´1q “ a` 1

which means that d0´1 is surjective. Also, we must have

dimC Impd10q “ a ` 1

which means that d10 is injective. �

Lemma 6.2. We have Kerpd01q “ Kerpd0´1q – Ca`1.

Proof. Applying the argument in Lemma 6.1 to the bent complex pA´1, d´1q, we also conclude that

dimC Kerpd0´1q “ a` 1.

Hence Kerpd01q – Kerpd0´1q. Then we show they are indeed the same space. Suppose

x P Kerpd0´1q so that x R Kerpd01q.

Then we know that

d10 ˝ d01pxq ‰ 0.

Since x P Kerpd0´1q and Impd10q Ă Kerpd0´1q, the map

pd10 ˝ d01q˚ : HpKHIpK, 0q
d0´1

ÝÝÑ KHIpK,´1qq Ñ HpKHIpK, 0q
d0´1

ÝÝÑ KHIpK,´1qq

is non-trivial. By Lemma 5.13, we can identify the map pd10 ˝ d01q˚ between bent complexes with
the composition of bypass maps

ψn`1
´,n ˝ ψn`2

`,n`1 “ 0 : Bn`2,i Ñ Bn,i.

By Proposition 5.5, this map is zero, which is a contradiction. Hence, we conclude that

Kerpd0´1q Ă Kerpd01q.

Since they have the same dimension, they must be the same vector space. �

Proposition 6.3. Suppose K is a genus-one knot so that

∆Kptq “ at` p2a ` 1q ` at´1 for a P N` and dimC KHIpKq “ 4a` 1.

Then for any u, v P Z with u ‰ 0, v ą 0 and gcdpu, vq “ 1, we have

dimC I
7pS3

u{vpKqq “ 2av ` |u|.

Proof. Applying Lemma 6.2 to K, we have

dimCHpA0, d0q “ 2a` 1.

By (6.1), we conclude that

dimC I
7p´S3

´3pKqq “ 2 ` dimCHpA0, d0q “ 2a` 3.
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The same argument applies to the mirror K̄ of K, so we know that

dimC I
7p´S3

3pKqq “ dimC I
7p´S3

´3pK̄qq “ 2a` 3.

Then the proposition follows from [BS20a, Theorem 1.1]. �

Remark 6.4. Under the terminologies in [BS20a], we know that r0pKq “ 2a and ν7pKq “ 0 under
the assumption of Proposition 6.3. However, we do not know if K is V -shaped or W -shaped in the
sense of [BS20a, Definition 3.6]. If K is slice, then [BS20a, Theorem 3.7] implies it is W -shaped. If
we knew the shape, then [BS20a, Theorem 1.1] would also tell us dimC I

7pS3
0pKqq.

6.2. The case of p2a´ 1q.
In this case we know that

KHIpK, iq –

$
’&
’%

Ca i “ ˘1,

C2a´1 i “ 0,

0 else.

Since

Kerpd10q Ă HpA1, d1q – C

hence we must have

dimC Kerpd10q ď 1.

Hence we have the following two subcases.

(1) dimC Kerpd10q “ 0.
(2) dimC Kerpd10q “ 1.

Lemma 6.5. We have Kerpd01q “ Kerpd0´1q – Ca in Case (1).

Proof. The condition dimC Kerpd10q “ 0 implies d10 is injective and dimC Impd10q “ a. Since Impd10q Ă
Kerpd0´1q, we know that dimC Kerpd0´1q ě a and hence dimC Impd0´1q ď a ´ 1. Since

KHIpK,´1q{pImpd0´1qq Ă HpA1, d1q – C,

we must have dimC Kerpd0´1q “ a.
Since d10 is injective, by the proof of Lemma 6.2, we know that Kerpd0´1q Ă Kerpd01q. Hence we

know that dimC Kerpd0´1q ě a and hence dimC Impd0´1q ď a ´ 1. Since

KHIpK, 1q{pImpd01qq Ă HpA´1, d´1q – C,

we must have dimC Kerpd01q “ a “ dimC Kerpd0´1q and hence Kerpd01q “ Kerpd0´1q. �

To distinguish the bent complexes ofK and its mirror K̄, we writeAspKq and AspK̄q, respectively.
We write d̄ij for the component of differentials in AspK̄q.

Lemma 6.6. We have Kerpd01q “ Kerpd0´1q – Ca´1 in Case (2).

Proof. Note that Kerpd10q Ă HpA1, d1q – C. This means that

Kerpd0´1q “ Impd10q and Impd0´1q “ KHIpK,´1q.

Consider the bent complex of the mirror knot. By Proposition 3.33 and Corollary 3.35, we have
a duality between dij and d̄ji . In particular, we have

Kerpd̄´1
0 q – Cokerpd0´1q “ 0.
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So we can apply Lemma 6.5 to AspK̄q and conclude that Kerpd̄01q “ Kerpd̄0´1q. Using the duality

again, we have Impd10q “ Impd´1
0 q – Ca´1. Hence Kerpd´1

0 q – C. Since

Kerpd´1
0 q Ă HpA´1, d´1q,

we conclude that

Kerpd0´1q “ Impd10q “ Impd´1
0 q “ Kerpd01q.

�

The following corollary is straightforward from the above discussion.

Corollary 6.7. For a knot K Ă S3, its bent complex AspKq falls into Case (1) if and only if
ASpK̄q falls into Case (1).

Proposition 6.8. Suppose K is a genus-one knot so that

∆Kptq “ at` p2a ´ 1q ` at´1 for a P N` and dimC KHIpKq “ 4a´ 1.

Then for any u, v P Z with u ‰ 0, v ą 0 and gcdpu, vq “ 1, one and exactly one of the following two
cases happens.

(a) dimC I
7pS3

u{vpKqq “ p2a ´ 1qv ` |u´ v|.

(b) dimC I
7pS3

u{vpKqq “ p2a ´ 1qv ` |u` v|.

Proof. When AspKq falls into Case (1), then from Lemma 6.5 we know that

dimCHpA0, d0q “ 2a` 1.

Hence by (6.1), we conclude that

dimC I
7p´S3

´3pKqq “ 2 ` dimCHpA0, d0q “ 2a` 3.

Furthermore, by Corollary 6.7, we know that AspK̄q falls into Case (1). By Lemma 6.6, it follows
that

dimC I
7p´S3

3pKqq “ dimC I
7p´S3

´3pK̄qq “ 2a` 1.

Then from [BS20a, Theorem 1.1] we know that Case (a) holds. When AspKq of K falls into Case
(1), by similar proof, we know that Case (b) holds. �

Remark 6.9. Note that K satisfies Case (a) in Proposition 6.8, if and only if K̄ satisfies Case
(b) in Proposition 6.8. The hypothesis of Proposition 6.8 only involves the genus, the Alexander
polynomial, and the total dimension of the instanton knot homology of the knot, which are all
impossible to distinguish K from its mirror.

Remark 6.10. The two cases of Proposition 6.3 correspond to the two cases where ν7pKq “ 1 and
ν7pKq “ ´1, respectively. For genus-one alternating knots, from [BS20a, Corollary 1.10] we know
that

τ 7pKq “ ´
1

2
σpKq, |σpKq| ď 2,

2τ 7pKq ´ 1 ď ν7pKq ď 2τ 7pKq ` 1,

and hence

´1 ď ν7pKq ď 1.

If we suppose futher that the Alexander polynomial is of the form

∆Kptq “ at` p2a´ 1q ` a´1,
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then we have σpKq ‰ 0 and hence τ 7pKq “ ν7pKq “ ´σpKq{2. Thus, for genus-one alternating
knots, which case of Proposition 6.8 happens depends on the signature of K.

Proof of Theorem 1.20. The result in instanton theory is a combination of Proposition 6.3, Proposi-
tion 6.8, Remark 6.4, and Remark 6.10. The result in Heegaard Floer theory is follows from [Han20,
Proposition 15]. �

7. Examples of SU(2)-abundant knots

In this subsection, we provide many examples of SUp2q-abundant knots.

Proposition 7.1. Instanton L-space knots in S3 are classified in the following cases

(1) An alternating knot is an instanton L-space knot if and only if it is the torus knots T p2, 2n`1q.
(2) A Montesinos knots (in particular, a pretzel knot) is an instanton L-space knot if and only if it

is the torus knot T p2, 2n` 1q, the pretzel knot P p´2, 3, 2n` 1q for n P N`, and their mirrors.
(3) Knots that are closures of 3-braids are not instanton L-space knots except the twisted torus

knots Kp3, q; 2, pq with pq ą 0 and their mirrors.

Proof. Note that torus knots admit lens spaces surgeries [Mos71] and pretzel knots P p´2, 3, 2n`1q
admit Seifert fibred L-space surgeries [LM16]. Hence they are instanton L-space knots.

Theorem 1.3 provides many necessary conditions of instanton L-space knots. By [OS05b, Propo-
sition 4.1], if an alternating knot satisfies term (1) in Theorem 1.3, then it is the T p2, 2n` 1q torus
knot. Hence hyperbolic alternating knots are not instanton L-space knots.

In [BM18], there is a classification of (Heegaard Floer) L-space knots for Montesinos knots.
From [BM18, Section 3.1], the proof of this classification only depends on term (1) in Theorem 1.3,
the inequality (1.2), the fibredness, and the strongly quasi-positive condition [BS19, Theorem 1.5].
Hence the classification also works for instanton L-space knots.

In [LV21], it is shown that all closures of 3-braid except Kp3, q; 2, pq do not satisfy term (1) and
term (2) in Theorem 1.3. Hence they are not instanton L-space knots. �

Remark 7.2. For pretzel knots, there is another approach [LM16] to classify L-space knots, which
only depends on term (1) in Theorem 1.3, the inequality (1.2), the fibredness, and the direct

calculation on {HFKpS3, P p3,´5, 3,´2qq. However, it is hard to calculateKHIpS3, P p3,´5, 3,´2qq
directly, so we use the approach in [BM18].

Remark 7.3. Note thatK “ Kp3, q; 2, pq with pq ą 0 is a p1, 1q-L-space knot from the proof of [Vaf15,

Theorem 3.1(a)]. By [LY20, Corollary 1.5], we know that dimCKHIpS3,Kq “ dimF2

{HFKpS3,Kq.
However, we do not know ifK is an instanton L-space knot because [Vaf15, Theorem 3.1(a)] depends
on the calculation of the chain complex CFK´pS3,Kq by a genus one doubly-pointed Heegaard
diagram.

Proof of Corollary 1.6. This follows directly from Proposition 7.1 and Remark 1.8. �

Remark 7.4. There is a family of twisted torus knots Kpp, q; 2,mq with some conditions in [Mor06,
Theorem 5] whose Alexander polynomials do not satisfy term (1) in Theorem 1.3. Thus, those knots
are also not instanton L-space knots and hence SUp2q-abundant. In general, the classification of
L-space knots for twisted torus knots is still open; see [Vaf15, Mot16, BM19] for some special cases.

Then we consider satellite knots and cable knots. There are some useful theorems.



52 ZHENKUN LI AND FAN YE

Definition 7.5 ([SZ20]). A knot K Ă S3 is called SUp2q-averse if there are infinitely many
r P Qt0u so that all representations π1pS3

r pKqq Ñ SUp2q have abelian images.

Remark 7.6. If b1pY q “ 0, then an SUp2q representation of Y has abelian image if and only if it
has cyclic image.

Theorem 7.7 ([SZ20, Theorem 1.8]). Let K Ă S3 be a nontrivial knot, and suppose that some
satellite P pKq with winding number w is SUp2q-averse. Then we have the following.

(1) If P pUq is not the unknot U , then it is also SUp2q-averse.
(2) If w “ 0, then K is SUp2q-averse.

Theorem 7.8 ([SZ20, Theorem 10.6]). Let K Ă S3 be a nontrivial knot, and let p, q P Z satisfying
gcdpp, qq “ 1 and q ě 2. If cable knot Kp,q of K is SUp2q-averse, then K is also SUp2q-averse.

Theorem 7.9 ([BS19, Lemma 8.5]). Let K Ă S3 be a nontrivial knot, and let p, q P Z satisfying
gcdpp, qq “ 1, q ě 2, and p{q ą 2gpKq ´ 1. Then the cable knot Kp,q is a positive instanton L-space
knot if and only if K is an instanton L-space knot.

Definition 7.10. A K Ă S3 is called a distinguished knot if it is an alternating knot, a Mon-
tesinos knot, or a knot from a 3-braid except the unknot, T p2, 2n`1q, P p´2, 3, 2n`1q with n P N`,
Kp3, q; 2, pq with pq ą 0, and their mirrors.

Note that distinguished knots are not instanton L-space knots and hence not SUp2q-averse by
Remark 1.8. Then we have the following corollaries.

Corollary 7.11. Suppose P pKq Ă S3 is a satellite knot with winding number w ě 0 of the pattern
P Ă S1 ˆD2. If one of the following holds, then P pKq is not SUp2q-averse:

(1) P pUq is a distinguished knot;
(2) w ‰ 0 and K is a distinguished knot.

Corollary 7.12. Let K Ă S3 be a distinguished knot, and let p, q P Z satisfying gcdpp, qq “ 1, q ě 2,
and p{q ą 2gpKq ´ 1. Then the cable knot Kp,q is SUp2q-abundant.

Finally, we strengthen a result in [BS19, Theorem 1.8].

Corollary 7.13. Suppose K Ă S3 is a nontrivial knot and suppose S3
3pKq does not have irreducible

SUp2q representations. Then K is a prime, fibred, strongly quasi-positive knot of genus two, and
its instanton knot homology has the form

(7.1) dimCKHIpS3,K, S, iq “

#
1 |i| ď 2,

0 else.

Proof. By Remark 1.8, we know that K is an instanton L-space. Then Theorem 1.9 applies. By
[BS19, Theorem 1.8] we know K is fibred, so [BS19, Theorem 1.11] applies and we obtain (7.1). �

Remark 7.14. In [LL21], the first author and Liang proved that if KHIpS3,Kq has the form (7.1)
for some knot K Ă S3, then K must be an instanton L-space knot. Then by [BS19, Theorem 1.5],
we know that S3

3pKq must be an instanton L-space. However, it is not enough to figure out whether
S3
3pKq has irreducible SUp2q representations.
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8. Further directions

In this section, we discuss some further directions of techniques introduced in this paper.
First, in Heegaard Floer homology, Ozsváth and Szabó [OS08, OS11] introduced a mapping cone

formula. Roughly speaking, for a null-homologous knot K in a closed 3-manifold Y , the homology
yHF pYrpKqq for any slope r can be computed by the filtrations on yCF pY q induced by K and ´K.
The large surgery formula is the first step of their proof, which is recovered in instanton theory by
Theorem 1.22. To prove an analog of the mapping cone formula in instanton theory. We need to
further recover the following structures.

Fact. Suppose K is a null-homologous in a closed 3-manifold Y . For any integer n, supposeWnpKq
is the cobordism from Y to YnpKq induced by attaching 4-dimensional 2-handle and supposeW 1

npKq
is the cobordism from YnpKq to Y obtained from ´WnpKq by turning around two ends. We have
the following structures in Heegaard Floer theory.

(1) There is a spinc decomposition of the cobordism map:

yHF pWnpKqq “
ÿ

sPSpincpWnpKqq

yHF pWnpKq, sq : yHF pY q Ñ yHF pYnpKqq.

Also, there is a spinc decomposition of yHF pW 1
npKqq.

(2) For a large enough n, the spinc decomposition of yHF pW 1
npKqq is compatible with some maps

constructed by the filtrations on yCF pY q from K and ´K.
(3) For any integer n and any positive integer m, there is a generalized surgery exact triangle

yHF pYnpKqq // yHF pYn`mpKqq

Fww♥♥♥
♥♥
♥♥
♥♥
♥♥
♥

Àm
i“1

yHF pY q

gg◆◆◆◆◆◆◆◆◆◆◆◆

where the map F is related to the spinc decomposition of yHF pW 1
npKqq.

Baldwin and Sivek constructed an analog of the term (1) in instanton theory when b1pWnpKqq “
0. The assumption of b1 is due to the proof of some structure theorem for the cobordism map. If
b1 ě 1, then it is harder to prove the structure theorem. Also, in their construction, the closures to
define I7pY q and I7pYnpKqq are special (the connected sum with T 3). It is unknown how to extend
the decomposition of the cobordism map to general closures of balanced sutured manifolds.

For the term (2), we can still use the lifts of two spectral sequences to recover filtrations. However,
without the decomposition of the cobordism map, it is impossible to write down a precise statement.

For term (3), we expect that the proof [BD95, Sca15] of the usual exact triangle between
I7pY q, I7pYnpKqq, and I7pYn`1pKqq can be applied to the generalized triangle with some modifi-
cations.
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Conjecture 8.1. Consider manifolds defined above. For any integer n and any positive integer m,
there is an exact triangle

I7pYnpKqq // I7pYn`mpKqq

F 1

ww♦♦♦
♦♦
♦♦
♦♦
♦♦
♦

Àm
i“1 I

7pY q

ff▼▼▼▼▼▼▼▼▼▼▼

where the map F is related to the cobordism W 1
npKq.

Second, for any quasi-alternating knot K Ă S3, Petkova [Pet13, Section 3] proved that the chain
complex CFK´pS3,Kq is determined by ∆Kptq and the signature σpKq. The essential observation
is that in this case, CFK´pS3,Kq is chain homotopic to

p {HFKpS3,Kq b F2rU s, Bz ` UBwq.

where Bz and Bw shift the Alexander grading only by one. Then the result follows from the equation
Bz ˝ Bw “ Bw ˝ Bz and algebraic lemmas. We can regard d` and d´ on KHIp´S3,Kq as analogs of
Bw and Bz in instanton theory, respectively. If the following conjecture was proven, then we could
apply algebraic lemmas in [Pet13, Section 3] to determine the differentials d` and d´ by ∆Kptq
and σpKq. By the large surgery formula, we could compute I7p´S´npKqq for |n| ě 2gpKq ` 1. By
results in [BS20a], we might calculate I7p´SrpKqq for any quasi-alternating knot, which generalizes
Theorem 1.20.

Conjecture 8.2. Suppose K Ă S3 is a quasi-alternating knot and suppose the maps d` and d´

are on KHIp´S3,Kq. Then the maps shift the grading associated to the Seifert surface by one, and
the following equation holds

d` ˝ d´
.

“ d´ ˝ d`,

where
.

“ means it holds up to multiplication by a unit in C.
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