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SU(2) REPRESENTATIONS AND A LARGE SURGERY FORMULA

ZHENKUN LI AND FAN YE

ABSTRACT. A knot K < S2 is called SU(2)-abundant if for all but finitely many r € Q\{0},
there is an irreducible representation m1(S2(K)) — SU(2), and the slope r = u/v # 0 with no
irreducible SU(2) representation must satisfy A g (¢?) = 0 for some u-th root of unity ¢. We prove
that a nontrivial knot K < S2 is SU(2)-abundant unless it is a prime knot and the coefficients of
its Alexander polynomial Ak (t) lie in {—1,0,1}. In particular, any hyperbolic alternating knot
is SU(2)-abundant. The proof is based on a large surgery formula that relates instanton knot
homology K HI(S3, K) and the framed instanton homology I#(S3 (K)) for any integer n satisfies
|n| = 2g(K) + 1. By the same technique, we can calculate many examples of instanton Floer
homology. First, for any Berge knot K, the spaces K HI(S3, K) and ITF?('(,SB7 K) have the same
dimension. Second, for any dual knot K, < S3(K) of a Berge knot K with r > 2g(K) — 1, we
show dim¢g K HI(S2(K), K,) = |[H1(S2(K);Z)|. Third, for any genus-one alternating knot K and
any r € Q\{0}, the spaces I%(S3(K)) and Iﬁ'(s’f (K)) have the same dimension.
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1. INTRODUCTION

The fundamental group is the most important invariant of a 3-manifold. Since it is usually hard
to understanding the fundamental group directly, studying homomorphisms from the fundamental
group to simpler groups (like SU(2),SL(2,C),SL(2,R)) is a fruitful approach to obtaining com-
putable invariants. For example, the Casson invariant [AM90] and the Casson-Lin invariant [Lin92]
are constructed using SU(2) representations, and the A-polynomial [CCG*94] is constructed using
the SL(2,C) character variety.

In this paper, we study SU(2) representations of a 3-manifold Y, i.e. homomorphisms from the
fundamental group m1(Y) to SU(2). For a knot K in S3, let Ak (t) € Z[t,t~'] denote its Alexander
polynomial with conditions

(1.1) Ak (t) = Ag(t™') and Ak (1) = 1.

For a knot K in a closed 3-manifold Y, we write Y (K) = Y\int N (K) for the knot complement and
Y, (K) for the manifold obtained from Y by Dehn surgery along K with slope r in some basis of
H, (Y (K);Z). If K is null-homologous, then we use the meridian and the Seifert longitude of K
as a canonical basis of Hy (Y (K);Z).

Definition 1.1. An SU(2) representation is called abelian if the image is contained in an abelian
subgroup of SU(2). An SU(2) representation is called irreducible if it is not abelian. A knot
K < 83 is called SU(2)-abundant if the following two conditions hold.

(1) For all but finitely many r € Q\{0}, the manifold S2(K) has an irreducible SU(2) representation.
(2) For any r = u/v # 0 so that S2(K) has only abelian SU(2) representations, there is some u-th
root of unity ¢ so that Ag(¢?) = 0.

Remark 1.2. The first condition implies K is not SU(2)-averse in the sense of |[SZ20]. Note that if
b1(Y) = 0, then an SU(2) representation of Y has abelian image if and only if it has cyclic image.
The second condition corresponds to some nondegenerate condition in [BS18b, Corollary 4.8]. By
[BS19, Remark 1.6], when u is a prime power, Ak (¢?) # 0 for any K and any u-th root of unity (.
Moreover, rationals with prime power numerators are dense in Q.

Suppose K < S? is a nontrivial knot and r € Q. It is already known that if |r| < 2 [KMO04a,
Theorem 1] or |r| is sufficiently large [SZ20, Corollary 1.2], then S, (K) has an irreducible SU(2)
representation. There are many other closed 3-manifolds with irreducible SU(2) representations;
see [KM04B, [Lin16, Zenl7, [Zen18, BS18H, LPCZ21, [BS21, [S721, XZ21].

In this paper, we provide some sufficient conditions for SU(2)-abundant knots.

Theorem 1.3. A nontrivial knot K is SU(2)-abundant unless all following conditions hold.
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(1) There exists k € Ny and integers ny, > ng—1 > -+ >ny > ng = 0 so that
k
Ag(t) = (—1)F + D (=DF (™ + 7).
j=1

(2) The Seifert genus satisfies g(K) = np = ng—1 + 1.
(3) K is a prime knot, i.e., it is not a connected sum of two knots.

Remark 1.4. By term (1) and term (2) in Theorem [[L3] we have
(1.2) det(K) = [Ag(-1)] <2k +1<2¢9(K) + 1.

Remark 1.5. In [BS19, Theorem 1.5] and [BS20a, Corollary 1.7, and Proposition 5.4], Baldwin and
Sivek proved that a nontrivial knot K is SU(2)-abundant unless K is both fibred and strongly quasi-
positive (up to mirror), the 4-ball genus g4(K) equals to g(K), and the slope r with no irreducible
SU(2) satisfies |r| = 2g(K) — 1. Tt is worth mentioning that by techniques developed in this paper,
it is possible to provide alternative proofs of those results.

From classification results in |[OS05H, BM18, [LV21]], we have the following corollary.

Corollary 1.6. The following knots are SU(2)-abundant.

(1) Hyperbolic alternating knots, i.e., alternating knots that are not torus knots T'(2,2n + 1).

(2) Montesinos knots (including all pretzel knots), except torus knots T'(2,2n + 1), pretzel knots
P(-2,3,2n+ 1) for n € Ny and their mirrors.

(3) Knots that are closures of 3-braids, except twisted torus knots K (3, q; 2,p) with pq > 0 and their
mirrors, where K(3,q;2,p) is the closure of a 3-braid made up of a (3,q) torus braid with p full
twist(s) on two adjacent strands.

The proof of Theorem [[3]is based on instanton knot homology K HI(Y, K) [KM10b] and framed
instanton homology I*(Y) |[KM11], which are vector spaces over C for a knot K in a closed 3-
manifold Y. There relative Zy-gradings on K HI(Y, K) and I*(Y) and a Seifert surface S of K
induces a Z-grading on K HI(Y, K) [Lil19, |GL19], which we write as

KHI(Y,K) = D KHI(Y, K, S,i).
i€EZ

We write (—Y, K) for the induced knot in the manifold —Y" obtained from Y by reversing the
orientation and call it the mirror of K or (Y, K). For a knot K in S, we write K for the mirror of
K,ie. (S* K)= (-5 K). We write —K for the knot with reverse orientation, which is different
from K. Then we have canonical isomorphisms

(1.3) KHI(-Y,K,S,i) =~ Hom¢(KHI(Y, K, S,—i),C) and I*(—Y) =~ Homc(I*(Y), C).

Definition 1.7. A rational homology sphere Y is called an instanton L-space if dimc I#(Y) =
|H1(Y;Z)|. Aknot K in an instanton L-space Y is called an instanton L-space knot if a nontrivial
surgery on it also gives an instanton L-space. We call K a positive instanton L-space knot if
a positive surgery on it also gives an instanton L-space.

Remark 1.8. Tt follows directly from (3] that Y is an instanton L-space if and only if —Y is an
instanton L-space. Since S3(K) = —S2,(K), a positive surgery on K giving an instanton L-space
if and only if a negative surgery on K giving an instanton L-space. By [SZ20, Theorem 1.1] and
[BS19, Corollary 4.8], if K = S? is not SU(2)-abundant, then K is an instanton L-space knot. By
[BS18b, Theorem 1.5] and passing to the mirror if necessary, we can further assume that for any
sufficiently large integer n, the manifold S3(K) is an instanton L-space.
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The following theorem is the main theorem of this paper.

Theorem 1.9. If K c S3 is an instanton L-space knot, then K is a prime knot and there exists
k € N and integers

N >Np—1>--->n1>ng=0>n_1> - >ni_ >n_p withn_; = —n,;

so that
1 ifi=n, forje[—k, k],

dimec KHI(S® K, S,i) =
0 else,

where the Zs-gradings of the generators of KHI(S3 K, S,n;) =~ C are alternating.
We prove Theorem [I.3] by Theorem

Proof of Theorem [[.3. By Remark [[8] if K < S? is not SU(2)-abundant, then K is an instanton
L-space knot. Then Theorem [I[.9] applies to K and we obtain term (3). Since the space in the top
Z-grading of K HI(S?, K) is one-dimensional, it follows from [KM10H, Section 7] that K is fibred.
Then by [BS18a, Theorem 1.7], we know that dim¢ K HI(S?, K, S,g(K) —1) > 1, and Theorem [L.9]
forces the equality holds. Thus, term (1) and term (2) follow from

YIX(KHI(S®, K, S,i)) -t = +Ak(t)
€L
[Lim09, IKM10a], where the sign ambiguity is due to the relative Zs-grading. O

Theorem is an instanton analog of [OS05h, Theorem 1.2] in Heegaard Floer theory due to
Ozsvath and Szabd. The key step to prove Theorem is to establish an instanton version of the
large surgery formula in Heegaard Floer theory. We will explain more details about this strategy
in Subsection [Tl Here we state more applications of techniques developed in this paper.

First, we can compare instanton knot homology of a instanton L-space knot K < Y to the
knot Floer homology HFK (Y, K) introduced in [0S044d, [Ras03], which verifies more examples of
[KM10b, Conjecture 7.24]. The main inputs are a generalization of Theorem [[L9 results about
Heegaard Floer theory from [OS05b, RR17], and the equation of graded Euler characteristics from
[LY20]

(1.4) Xer (KHI(Y, K)) = X (HFK (Y, K)) € Z[H]/ + H,
where H = H1(Y (K);Z)/Tors.

Definition 1.10 (JOS04b, [0S05h]). A rational homology sphere Y is called an (Heegaard Floer)
L-space if dimp, HF(Y) = |H1(Y;Z)|. A knot K in an L-space Y is called an (Heegaard Floer)
L-space knot if a nontrivial surgery on it also gives an L-space.

Theorem 1.11. Suppose K < Y is a knot with H1(Y(K);Z) ~ Z and suppose the meridian of
K represents q times the generator of H1(0Y (K);Z). Suppose K is both an L-space knot and an
instanton L-space knot so that Yy, (K) is an instanton L-space. If ged(q,v) = 1, then we have

(1.5) dime KHI(Y, K) = dimg, HFE (Y, K).
Moreover, when fixing the gradings associated to the Seifert surface S of K properly, we have

(1.6) dime KHI(Y, K, S,i) = dimp, HFK (Y, K, S,i) < 1 for any i € Z.
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Remark 1.12. When H, (Y (K);Z) has torsion, we can still decompose K HI(Y, K) along elements
in H1(Y(K);Z) as in |[LY2la]. However, since this decomposition is not canonical and adapting
the proofs to this case is subtle, we leave the discussion in this case to the future. That is why we
assume Hy (Y (K);Z) = Z and ged(gq,v) = 1.

Remark 1.13. From |[LPCS20, BS20a], for a knot K < S® that is both an L-space knot and an
instanton L-space knot, we have dimc I*(S2(K)) = dimg, HF(S2(K)) for any r € Q.

From |[ABDS20, Corollary 1.3], a Seifert fibred space is an L-space if and only if it is an in-
stanton L-space. In particular, closed 3-manifolds with elliptic geometry are both L-spaces and
instanton L-spaces [OS05b, Proposition 2.3] (or equivalently, with finite fundamental group by the
Geometrization theorem; see |[KLO§|). In particular, S3, the Poincaré sphere ¥(2,3,5), and all lens
spaces L(p, q) are both L-spaces and instanton L-spaces. From [OS05d, [Scalf], double-branched
covers of Khovanov-thin knots (in particular, all quasi-alternating knots) are also both L-spaces
and instanton L-spaces. Note that when Y is an integral homology sphere in Theorem [[LT1] then
we have ¢ = 1 and hence ged(q,v) = 1 for any v. Thus, we have the following corollary.

Corollary 1.14. Suppose K is a knot in' Y = S or the Poincaré sphere ¥(2,3,5). If there is some
r € Q\{0} so that Y,.(K) is a Seifert fibred L-space or a double-branched cover of Khovanov-thin

knot. Then (L) and ({I4) hold.

Remark 1.15. There are many examples of knots in S% and (2, 3,5) that admit lens space surgeries,
such as Berge’s knots [Ber18] in S3, Tange’s knots [Tan09, Theorem 4.1] in (2, 3,5), Hedden’s knots
[Hed11] in 3(2, 3,5) dual to Tk and T, in lens spaces (see also [Ras07, Bak14, BH20]), Baker’s tunnel
number two knots [BH20] in 3(2, 3, 5). There are also other twist families of knots admiting Seifert
fibred L-space surgeries [Mot16, [BM19].

Second, we can relate the knot in the following definition to the framed instanton homology of
large surgeries on it. The main input is the large surgery formula introduced in Subsection [Tl The
analog in Heegaard Floer theory was proved in [RR17, Section 3].

Definition 1.16. A knot K in an instanton L-space Y is called an instanton Floer simple knot
if dime¢ KHI(Y,K) = dime I¥(Y) = |H (Y Z)|.

Theorem 1.17. Suppose K < Y is a knot with Hy (Y (K ); Z) = Z. Suppose the basis of H1(0Y (K ); Z)
1s induced by the meridian of K. Then K is an instanton Floer simple knot if and only if for any
r € Q with |r| sufficiently large, the manifold Y,(K) is an instanton L-space.

Remark 1.18. In |LY2(0, Theorem 1.8], we proved Theorem [[.I7] for simple knots in lens spaces
without assuming H; (Y (K);Z) = Z. The technique there is different from the ones in this paper.

Remark 1.19. From [BS19, Theorem 1.5], we know that if K < S® is a positive instanton L-space
knot, then S2(K) is an instanton L-space if and only if 7 > 2¢g(K)—1. Hence we can apply Theorem
[LI7 to the dual knot K, = S3(K) of a Berge knot K with r > 2g(K) — 1 to obtain that K, is an
instanton Floer simple knot.

Third, we can make some calculations for manifolds obtained from surgeries on genus-one knots.
If K c 83 with g(K) = 1, we can use the large surgery formula introduced in Subsection 1]
to compute I*(S2(K)) when |r| sufficiently large (indeed |r| > 2g(K) + 1 = 3 is large enough).
Furthermore, we can compute I#(S?(K)) for any slope 7 by the concordance invariant v#(K) defined
by Baldwin and Sivek [BS20a]. In particular, we have the following theorem.
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Theorem 1.20. Suppose K is a genus-one alternating knot. Then for any r € Q\{0}, we have
dime I*(S3(K)) = dimg, HF(S3(K)).

Remark 1.21. For genus-one Khovanov-thin knots (in particular, genus-one quasi-alternating knots
[KM11, Corollary 1.6]), we can also fix the value dime I*(S2(K)) up to the mirror of K’; see Section
for more details.

1.1. A large surgery formula in instanton theory.

In this subsection, we sketch the idea of the proof of Theorem and introduce a large surgery
formula relates K HI(S®, K) and I*(S3(K)) for any integer n satisfies |n| = 2g(K) + 1. By Remark
L8 we may assume S3(K) is an instanton L-space for any sufficiently large integer n. However,
to apply the proof of [OS05b, Theorem 1.2], we need to recover (at least partially) the following
structures in instanton theory.

Fact. Suppose K is a knot in S® and n € N,.. We have the following structures in Heegaard Floer
theory [0S04h, 0S044, [Ras03].

(1) The decomposition of HF(S3(K)) associated to Spin®(S3(K)) = Z,:

n

HF(S}(K)) = @ HF(S}(K),[s]).
[sleZ,

(2) The filtration on the Heegaard Floer chain complex CF (53) associated to K, which induces a
spectral sequence from HFK (S%, K) to HF(S?).

(3) The large surgery formula computing HF (Sn(K),[s]) for any large integer n and [s] € Z,, from
the filtrations associated to K and —K.

(4) The differential D on the doubly-graded Heegaard Floer chain complex CFK®(S3, K), in
particular the fact that D? = 0.

Since we will use bypass maps based on contact geometry throughout the paper, it is more
convenient to use manifolds with reverse orientations. For technical reasons, we replace the notation
KHI with KHI. The constructions below can be generalized to a rationally null-homologous knot
in a closed 3-manifold. For simplicity, we only discuss the constructions for a knot K in an integral
homology sphere Y and deal with the general case in the main body of the paper. Suppose S is a
Seifert surface of K.

The analogy of term (1) can be found in [LY20, Section 4]. We write the decompostion as

F(=Y_,(K)) = @ H-Y_n(K),[s])
[sleZy

Since there is no explicit construction of the chain complex of KHI(Y, K), it is hard to construct
the filtration directly. Fortunately, it is possible to recover the spectral sequence and then lift the
spectral sequence to a filtered chain complex by algebraic construction. For the analog of term (2),
we construct two spectral sequences from KHI(—Y, K) to I*(—Y) by two types of bypass maps, and
construct two filtered differentials dy and d_ on KHI(-Y, K) with

H(KHI(-Y, K),dy) =~ HKHI(-Y,K),d_) = I*(-Y).

For the analog of term (3), we need to introduce the bent complex (c.f. Construction B:21] and
Construction B.30) as follows.
For any integer s, the bent complex and the dual bent complex are the chain complexes

Ay = A=Y, K) := (KHI(-Y, K),d,) and AY = AY (Y, K) := (KHI(-Y, K),d) ),
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respectively, where for any element x € KHI(-Y, K, S, k),

d4(z) k>0, d_(z) k>0,
du(2) = { di(2) +d_(z) k=0, and d} (2) = { ds(2) +d_(x) k=0,
d_(z) k<0, dy(z) k <0.
Since dy ody = d_od_ =0, we have ds ods = dY od = 0. Hence we can consider the homologies

H(A;) and H(AY). The proof of following theorem is purely algebraic. The main ingredient is the
octahedral axiom (TR4) for a triangulated category.

Theorem 1.22 (Large surgery formula). For a fized integer n satisfying |n| = 2g(K) + 1, suppose
Smin = —|n| + 1+ g(K) and Smae = |n| — 1 — g(K).

For any integer s', suppose [s'] is the image of s in Zy,|. For any integer s € [Smin, Smazx], we have

H(A_;) ifn>0,

IH(=Y_(K),[5 — 8min]) = {H(AZ ) ifn<O.

We do not know how to construct the analog of the term (4). However, the proof of [OS05H,
Theorem 1.2] only uses the fact that D? = 0 on some subcomplexes of CFK®(S3, K). Thus, to
obtain a proof of Theorem [[.9] we only need some weaker vanishing results. Since the precise
statement is too technical, we only state some byproducts in the next subsection, which are of
independent interest for contact geometry.

1.2. Instanton contact element and Giroux torsion.

For a contact 3-manifold (N,&) with convex boundary and dividing set T" on dN, Baldwin
and Sivek |[BS16] constructed an instanton contact elemen O(N,T,¢) that lives in a version of
sutured instanton homology SHI(—N, —T") [BS15]. Suppose (Y,¢’) is a closed contact 3-manifold
and suppose (Y'(1),0,&'|y (1)) is obtained from (Y, &’) by removing a 3-ball. Then Baldwin and Sivek
defined

H(Y, 5/) = Q(Y(l), 9, §,|Y(1)) € ﬂ(—Y(l), _5) = Iﬁ(Y)

We have the following theorems for the instanton contact element.

Theorem 1.23. Suppose (N, &) is a contact 3-manifold with convex boundary and dividing set T
on ON. Suppose S is an admissible surface (c.f. Definition[32) in (N,T') and suppose S and S_
are positive region and negative region of S with respect to &, respectively. We write the Z-grading
associated to S as
SHI(—N,-T) = @ﬂ(—N, —I,S,4).
€7
Then the instanton contact element (N, T, &) lives in

SHI(—N, T, S, M)

Definition 1.24. A contact closed 3-manifold (Y, §) has Giroux torsion if there is an embedding
of (T? x [0, 1], 2r) into (Y, &), where (x,y,t) are coordinates on T2 x [0,1] =~ R?/Z? x [0,1] and

Nor = Ker(cos(2nt)dx — sin(2nt)dy).

Theorem 1.25. If a closed contact 8-manifold (Y, &) has Giroux torsion, then its instanton contact
element (Y, &) € I*(—Y) wanishes.
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Remark 1.26. There is a contact element in Heegaard Floer theory, constructed by Ozsvath and
Szabé |0S05a] for closed contact 3-manifolds, and extended by Honda, Kazez, and Mati¢ [HKMOY]
for contact 3-manifolds with convex boundary. The analog of Theorem in Heegaard Floer
theory holds by definition of the contact element. The analog of Theorem in Heegaard Floer
theory was first conjectured by Ghiggini |[Ghi06, Conjecture 8.3], and then proved by Ghiggini,
Honda, and Van Horn-Morris [GHVHMOS]. More proofs can be found in [Mas12, Mat13].

Organization. The paper is organized as follows. In Section [2] we collect some algebraic results
about spectral sequences and the triangulated category, which are used in the proof of the large
surgery formula. In Section Bl we constructed differentials dy and d_ on KHI(Y, K) for a rationally
null-homologous knot K in a closed 3-manifold Y and prove a generalization of Theorem In
Section [ we prove some vanishing results about contact elements and cobordism maps associated
to contact structures. In particular, we prove Theorem [[.23]and Theorem[[.250l In Section[5] we use
results in former sections to prove a generalization of Theorem [[.L3l Moreover, we prove Theorem
[[IT7 and Theorem [LI7 In Section [B we study surgeries on genus-one knots in 52 and prove
Theorem [[220L In Section[7] we provide examples of SU(2)-abundant knots and prove Corollary [LE
In Section [§, we discuss some further directions of techniques introduced in this paper and make
some conjectures.

Convention. If it is not mentioned, all manifolds are smooth, oriented, and connected. All contact
structures are oriented and positively co-oriented. Homology groups and cohomology groups are
with Z coefficients. We write Z,, for Z/nZ and Fy for the field with two elements.

A knot K c Y is called null-homologous if it represents the trivial homology class in Hy(Y;Z),
while it is called rationally null-homologous if it represents the trivial homology class in Hy(Y; Q).

For any compact 3-manifold M, we write —M for the manifold obtained from M by reversing
the orientation. For any surface S in a compact 3-manifold M and any suture v < dM, we write .S
and v for the same surface and suture in —M, without reversing their orientations. For a knot K
in a 3-manifold Y, we write (=Y, K) for the induced knot in —Y with induced orientation, called
the mirror knot of K. The corresponding balanced sutured manifold is (—Y (K), —vk).

Acknowledgement. The authors would like to thank John A. Baldwin, Paolo Ghiggini, Ko Honda,
Wenyuan Li, Ciprian Manolescu, Linsheng Wang, and Yi Xie for valuable discussions. The authors
are grateful to Ian Zemke for pointing out the proof of Proposition .14l The second author would
like to thank his supervisor Jacob Rasmussen for patient guidance and helpful comments and thank
his parents for support and constant encouragement. The second author is also grateful to Yi Liu
for inviting him to BICMR, Peking University.

2. ALGEBRAIC PRELIMINARIES

In this section, we collect some algebraic results from homological algebra. All vector spaces are
finite-dimensional and over a fixed field.

2.1. Unrolled exact couples.

In this subsection, we explain the construction of the spectral sequence from an unrolled exact
couple [Boa99] and describe the relationship between the spectral sequence and the filtered chain
complex.
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Definition 2.1. An unrolled exact couple (E*, A®) is a diagram of graded vector spaces and
homomorphisms of the form

As+2 As+1 i A5~ 1

\/\/\/

Es+1

in which each triangle
-—>AS+1—>AS—>E8—>AS+1—>

is a long exact sequence. An unrolled exact couple is called bounded by an interval [sq, so] if
E® = 0 for s ¢ [s1,s2]. A morphism between two unrolled exact couples (E¥, A%) and (E*, A®)
consists of maps f°: E¥ — E° and ¢° : A> — A® that make all square commute.

Suppose (E*, A%) is an unrolled exact couple. For any integers s and r, define

Ker” A° = Ker(i") : A° — A°7") and Im" A° = Im(i(") : A°F" — A%),
where i(") denotes the r-fold iterate of 7. There are subgroups of E*:
0=BijcBic---clmj=Kerkc---cZ5cZ]=E°
where
B} = j(Ker™ ' A%) and Z; = k™' (Im" ! A°*1).

We call B and Z; the r-th boundary subgroup and the r-th cycle subgroup of E°, respectively.
We call the quotient

E} = Z7/B;
the s-component of the r-th page. Note that Ef = E®. If the unrolled exact couple is bounded by
[s1, 82], then we call the direct sum

S2
E, =@E;
51
the r-th page.
Remark 2.2. If the unrolled exact couple (E®, A®) is bounded by [s1,s2], then for any integers
71,72 > 8o — s1 and any integer s, we have
B =B, 2 =2Z;,,E, =E, =FE, and E,, = E,, = Ey.

Proposition 2.3 ([Boa99, Section 0]). Suppose (E®, A®) is an unrolled exact couple. For any
integers s and r, there exists a well-defined map

ds: ES — Bt
induced by j o (i)' o k such that
d*"od? =0 and Kerd)/Imd)™" = E; ;.

FEquivalently, the set {(EZ,dS)}r=1 forms a spectral sequence. Moreover, a morphism between two

unrolled exact couples induces a map between the corresponding spectral sequences.

Boardman studied the convergence of the spectral sequence in Proposition carefully, while
we only need the special case for bounded unrolled exact couples.
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Theorem 2.4 (|Boa99, Theorem 6.1]). Suppose (E*, A®) is an unrolled exact couple bounded by
[s1,82]. Then by exactness we have

ASt ~ Aslfl ~ A5172 ~ ... and A52+1 ~ A52+2 ~ A52+3 ~ ...

Consider the spectral sequence {(E,,d,)}r=1 from Proposition [Z.3, where we omit the superscript s

to denote the direct sum of all s-components. Then we have the following results.

(1) If A% = 0, then {(E,,d,)},>1 converges to G = A%*1 with filtration F*G = Ker®>T17% As2+1
and we have F*G/F*T1G ~ E3,.

(2) If A%2*1 =0, then {(Er,d,)}r>1 converges to G = A®' with filtration F*G = Im*™*' A% and
we have F*G/F**1G ~ E3,.

Remark 2.5. The results in [LY20, Section 4.5] are special cases of Proposition and Theorem
2.4 where we provided explicits proof by diagram chasing.

It is well-known that a filtered chain complex can induce a spectral sequence. Conversely, we
may construct a filtered chain complex from a spectral sequence. However, a priori we may lose
information when passing a filtered chain complex to a spectral sequence, so the reverse procedure
is not always canonical. When fixing an inner product on the first page or equivalently fixing a
basis, we have the following canonical construction.

Construction 2.6. Suppose (E*®, A%) is an unrolled exact couple bounded by [s1, s2] and suppose
{(Ey,d;)}r>1 is the spectral sequence from Proposition 23] Fix an inner product on Ef = E* for
all integers s. For simplicity, we omit the superscript s and consider the direct sum E of all E?.

For any subgroup X of E, there is a canonical isomorphism E/X =~ X', where X is the
orthogonal complement of X under the fixed inner product. From Definition 2.I] and Remark 2.2
there are subgroups of E:

OzBchQC"'B52751+1CZS2751+1C"'CZQCZ:[:E.

For p = 1,...,s2 — s1, define B, as the orthogonal complement of B, in B,;1, define Z, as the
orthogonal complement of Z,,1 in Z,, and define E/, as the orthogonal complement of Bl ,;

in Z,,_, 1. Then we have
S2—S81
E.=7,/B. =~ @ (B,®Z,)®E,,
p=r
S2—S81
Kerd, = Z,1/Br = @ (B, ®Z2,)®E, @By,
p=r+1

Imd, = By,1/B, = B,
Hence we can lift d,. : E,. — E, to a map
d. =Iod,oP:E—E,

where P and T are the projection and the inclusion, respectively. The only nontrivial part of d. is
from Z, to By, so for any 1,72 € {1,...,52 — 51}, we have d; od, = 0. Hence the summation

S2—S81
d= > d,
r=1
is a differential on E, i.e. d> = 0. Moroever, we have
H(E,d) ~E,, ~FEs,_,+1 = Eqy.
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It is straightforward to check that the filtration F°F = P
sequence {(Eyr,dy)}r>1.

E? on (E,d) induces the spectral

p=s

2.2. The octahedral axiom.

It is well-known that the derived category of an abelian category is a triangulated category
(for example, see [Wei94, Proposition 10.2.4]). In particular, the derived category of the category
of vector spaces is triangulated. Graded vector spaces can be regarded as objects in the derived
category with trivial differentials. The following theorem is the special case of the octahedral axiom
(TR4) of the triangulated category.

Theorem 2.7. Suppose X,Y,Z, X', Y', 7' are graded vector spaces satisfying long exzact sequences
SxLyhz oo xiy.
SsYLzox Ly
N =Ny G TR S R

where X{1} denotes the grading shift of X by 1, so do Y{1} and Z{1}. Then we have the fourth
long exact sequence

HZ/i»Y’ﬂX’ loh{1} Z/{I}H
such that the following diagram commutes

%—X{l}

VA%
N,

{1}

¢ Y{1}
o
l
X X’ loh{1} Z’{l}

where the arrows come from four long exact sequences.

Sketch of the proof. We regard graded vector spaces as chain complexes with trivial differentials.
By the long exact sequences in the assumption, we know that Z’, X', Y’ are chain homotopic to
mapping cones Cone(f), Cone(g), Cone(g o f), respectively. Define

VY @X{1} > Z@® X{1}
Yy, z) = (9(y), x)

and

b Z@®X{1} > Z@Y{1}
¢(z,2) = (2, f{1}(x))

The map ¢ is a chain map from Cone(f) to Cone(g o f) and the map ¢ is a chain map from
Cone(g o f) to Cone(g). Since the underlying vector space of Cone(¢)) is Z@® X {1} ®Y {1} ® X {2},
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the inclusion Z @Y {1} - Z&@® X{1} @ Y{1} ® X{2} induces a map n from Cone(g) to Cone()),
which is a chain map and makes the following diagram commutes

Cone(f) Cone(g o f) ¢ Cone(g) My Cone(f){1}

Cone(f) S S Cone(g o f) Cone(¢p) ———— Cone(f){1}
Define

(:ZoX{1laY{l}®X{2} > ZaY{1}
((z,2,9,2") = (2,9 + f(2))

Then we can check ¢ o7 is the identity map on Cone(g) and 5o is chain homotopic to the identity
on Cone(). Hence Cone(f), Cone(g o f) and Cone(g) form a long exact sequence. O

3. DIFFERENTIALS AND THE LARGE SURGERY FORMULA

In this section, we provide more details for constructions in Subsection [[.T] and prove Theorem
22 Most notations follow from [LY20, Section 4].

3.1. Backgrounds on sutured instanton homology.
In this subsection, we review some basic facts of sutured instanton homology.

Definition 3.1 ([Juh06, Definition 2.2]). A balanced sutured manifold (M,~) consists of a
compact 3-manifold M with non-empty boundary together with a closed 1-submanifold v on dM.
Let A(y) = [—1,1] x v be an annular neighborhood of v € M and let R(y) = dM\int(A(7)), such
that they satisfy the following properties.

(1) Neither M nor R(7) has a closed component.

(2) If 0A(y) = —0R(7) is oriented in the same way as 7, then we require this orientation of dR(7)
induces the orientation on R(y), which is called the canonical orientation.

(3) Let Ry (7) be the part of R(v) for which the canonical orientation coincides with the induced
orientation on dM from M, and let R_(y) = R(y)\R4+(y). We require that x(Ri(v)) =
X(R—(7)). If v is clear in the contents, we simply write Ry = R4 (7), respectively.

For any balanced sutured manifold (M,~), Kronheimer and Mrowka [KM10b, Section 7] con-
structed a C-vector space SHI(M,~) called the sutured instanton homology of (M,~). The
construction was based on closures of (M, ), i.e. a tuple (Y, R,w) consists of a closed 3-manifold
Y, a closed surface R Y, and a 1-cycle w ¢ Y with some admissible conditions.

A priori, the space SHI(M,~) only represents an isomorphism class. Later, Baldwin and Sivek
[BS15, Section 9] dealt with the naturality issue and constructed a projectively transitive system
SHI(M,~) (twisted version). This system records the collection of vector spaces associated to
different closures of (M, ), which are all isomorphic to SHI(M, ), together with canonical isomor-
phisms relating these spaces, where these isomorphisms are well-defined up to multiplication by a
unit in C.

In practice, when considering maps between sutured instanton homology, we can always fix
closures of corresponding balanced sutured manifolds and consider linear maps between actual
vector spaces, at the cost that equations between maps only hold up to multiplication by a unit.
Hence if it is clear, we will not distinguish the projectively transitive system and the vector space
in the system.
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To be consistent with notations in |[LY20], we write SHI(M,~) for the system SHI(M, ). Note
that SHI(M, ~) represents the isomorphism class in [BS15, Section 9], and we write SHI(M,~) for
the isomorphism class instead.

There is another projectively transitive system SHI?(M, ) (untwisted version) constructed in
[BS15, Section 9]. The main difference of two systems is that SHI(M, «y) corresponds to closures of
(M,~) for which the surface R may have different genera and SHIY(M, ) corresponds to closures
for which g = g(R) is fixed. Many arguments for SHI(M,~) also hold for SHI?(M,~) when ¢
is sufficiently large. In [LY21b], we considered SHI?(M,~) as a special case of formal sutured
homology and calculated its graded Euler characteristic for sufficiently g. By [BS15, Theorem 9],
the subsystem of SHI(M, +) for closures of fixed genus g is isomorphic to SHI?(M, ~), so properties
of SHY(M, ) (especially about graded Euler characteristics) also apply to SHI(M, ).

Suppose K is a knot in a closed 3-manifold Y. Let

Y (1) := Y\B? and Y(K) := Y\intN (K).

Suppose § is a simple closed curve on 0Y (K) = S? and suppose vk is two copies of the meridian
of K with opposite orientations. Define

IF(Y) := SHI(Y (1), 6) and KHI(Y, K) := SHI(Y (K), vk).

Note that I*(Y") also denotes the framed instanton homology of Y constructed in [KM11], though
it is isomorphic to SHI(Y'(1),0). So we abuse notation and do not distinguish these two definitions
in this paper.

Definition 3.2 (|GL19, Definition 2.25]). Suppose (M,~) is a balanced sutured manifold and
S < (M,~) is a properly embedded surface in M. The surface S is called an admissible surface
if the following conditions hold.

(1) Every boundary component of S intersects -y transversely and nontrivially.
(2) We require that 3|S n~| — x(S) is an even integer.
For an admissible surface S < (M, ), there is a Z-grading on SHI(M, v) |Lil9, IGL19]:
SHI(M, ) = @ SHI(M,~, S, ).
€7
From the construction of the grading, we have the following basic proposition, which implies (3]).

Proposition 3.3 ([LY21b, Theorem 2.29]). For any balanced sutured manifold (M,~) and any
admissible surface S < (M,~y), there are canonical isomorphisms

SHI(—M,~,S,i) ~ Homc(SHI(M,~,S,i),C)

and
SHI(M,~,—S,i)~ SHI(M,—~,S,i) ~ SHI(M,~, S, —1).

3.2. The caonical basis on the torus boundary.

In this subsection, we provide a canonical way to fix the basis on the boundary of the knot
complement and introduce some notations about sutures.

Suppose Y is a closed 3-manifold and K < Y is a null-homologous knot. Let Y (K) be the
knot complement Y\int(N(K)). Any Seifert surface S of K gives rise to a framing on dY (K): the
longitude A can be picked as S n 0Y (K) with the induced orientation from .S, and the meridian p
can be picked as the meridian of the solid torus N(K) with the orientation so that - A = —1. The
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‘half lives and half dies’ fact for 3-manifolds implies that the following map has a 1-dimensional
image:

Ox + Hy(Y(K), 0Y (K); Q) — H1(0Y (K); Q).
Hence any two Seifert surfaces lead to the same framing on oY (K).

Definition 3.4. The framing (u, A) defined as above is called the canonical framing of (Y, K).
With respect to this canonical framing, let

=Y (K)u, S x D?
be the 3-manifold obtained from Y by a ¢/p surgery along K, i.e.,
¢({1} x 0D*) = qu + pA.
We also write Y, for }A/q/p, where @ = ¢({1} x dD?). When the surgery slope is understood, we

also write }qu/p simply as Y. Let K be the dual knot, i.e., the image of S* x {0} = S! x D? in Y
under the gluing map.

~

Y,

a/p

Convention. Throughout this section, we will always assume that ged(p,q) = 1 and ¢ > 0 or
(p,q) = (1,0) for a Dehn surgery. Especially, the original pair (Y, K) can be thought of as a pair
(f/, K ) obtained from (Y, K) by the 1/0 surgery. Moreover, we will always assume that the knot
complement Y (K) is irreducible. This is because if Y (K) is not irreducible, then Y (K) =~ Y'(K')gY"”
for some closed 3-manifold Y/, Y” and a null-homologous knot K’ < Y’. By the connected sum
formula [Lil8a, Section 1.8], we have

SHI(Y (K),~) = SHI(Y'(K"),7) @ I*(Y")
for any suture 7. Hence all results hold after tensoring I*(Y").

Next, we describe various families of sutures on the knot complement. Suppose K < Y is a
null-homologous knot and the pair (SA/, K ) is obtained from (Y, K) by a ¢/p surgery. Note we can
identify the complement of K < Y with that of K < Y, i.e. Y(K) = Y(K).

On 0Y(K), there are two framings: One comes from K, and we write longitude and meridian

as A and u, respectively. The other comes from K. Note only the meridian [ of K is well-defined,
and by definition, it is i = qu + pA.

Definition 3.5. If p = 0, then ¢ = 1 and i = . We can take A = X. If (¢,p) = (0,1), then we
take A = —p. If p,q # 0, then we take A = gopt + po), where (go, po) is the unique pair of integers
so that the following conditions are true.
(1) 0<|po| < [p| and pop < 0.
(2) 0< Jao] < lgl and gog < 0.
(3) pog —pgo = 1.
In particular, if (¢,p) = (n, 1), then A= —[4.

For a homology class A + ypu, let v;x4y, be the suture consisting of two disjoint simple closed
curves representing +(zA + yu) on dY (K). Furthermore, for n € Z, define

Fn(Q/p) = '75\_7”1 = W(po—np)k-k—(qo—nq)ua and FH(Q/p) = Yo = Vprtqu-

Suppose (qn,pn) € {£(q0 — ng, po — np)} such that g, = 0.
When emphasizing the choice of fi, we also write I', (/1) and I',(2). When X and /i are understood,
(

).
we omit the slope ¢/p and simply write T, and f#. When (¢,p) = (1,0), we write I',, and T',, instead.
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Remark 3.6. Since the two components of the suture must be given opposite orientations, the
notations Yzatyu and y_za—yu represent the same suture on the knot complement Y (K). Our
choice makes g,+1 < ¢, for n < —1 and ¢,4+1 = g, for n = 0.

3.3. Bypass maps on the knot complements.

In this subsection, we review results in |[LY20, Section 4] that are useful in this paper.

If (M,~) = (Y(K),Yzr+yp) and S is an admissible surface obtained from a minimal genus Seifert
surface (c.f. |[LY20, Definition 4.12], where we write ST for 7 € {0, —1}), then we can calculate the
maximal and minimal nontrivial gradings explicitly. Note that we assume that Y (K) is irreducible,
so the decomposition of (Y (K), Vzr4yu) along S and —S are both taut (c.f. [Juh06, Definition 2.6]).
Since we will use contact gluing maps later, it is more convenient to consider (—M, —v) instead of
(M, 7).

Definition 3.7. For any integer y € N, define

. y—1 ) y—1
Paa = 1251+ 9(K), and 8, = [~ L2 — g(K),
where [z] is the minimal integer larger than z. For u = qu + pA and the suture T, and f#, define
/z:lnax = iggax7 ;’?nln = zgr?zn’ and %ﬁmaz = zgnzn’ ;’Hmzn = Z;Zrnn

Lemma 3.8 ([LY20, Lemma 4.14]). Suppose K < Y is a null-homologous knot and yzriyu 1S @
suture on 0Y (K) withy = 0. Suppose further that S is a Seifert surface of K. Then the mazimal and
minimal nontrivial gradings of SHI(=Y (K ), —%(a.,y)) associated to S are i¥,,, and il ;. , respectively.
In particular, the mazimal and minimal nontrivial gradings of SHI(-Y (K), —f‘n) associated to S
are 1" .. and 1" respectively.

max min’

It is easy to see that

ngr}rloo(lmax - Zmin) = nll}}rloo(zg(K) +ng—qo— 1) = +00.

However, by following lemmas, there is no more information in SHI(—Y (K), —I',,) when n is large.
To see this, we first introduce the bypass exact triangles.

Definition 3.9. Suppose (M, ) is a balanced sutured manifold and S is an admissible surface in
(M,~). For any i,j € Z, define

ﬂ(M,’y,S,Z)[]] = ﬂ(Ma%SJ _j)
Moreover, let SHI(M,~,S,i){1} be obtained from SHI(M,~, S,4) by switch the odd and the even
relative Zo-gradings.
Proposition 3.10 (|JLY20, Proposition 4.15], see also |Lil9, Proposition 5.5]). Suppose K Y is a
null-homologous knot and suppose the pair (Y, K) is obtained from (Y, K) by a q/p surgery. Suppose
further that the sutures I'y, and T, are defined as in Definition [ and S is a Seifert surface of K.
Then the following conditions hold, where all maps are grading preserving.

(1) For n € Z so that gn+1 = qn + q, i.e., n =0, there are two bypass exact triangles:

wi,n#»l

SHI(—Y (K),—T, S)[imt} — 2., SHI(-Y (K),~T'41,5)

wi,nT /
v

‘n+l 7?'“‘

ﬂ(_y(K)v _fuv S)[lmam ma;ﬂ]
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and

(2) For n€Z so that gn4+1 = qn — q, i.e., n < —1, there are two bypass exact triangles:

SHI(—Y (K), T, S) Pt SHI-Y (K, Pt $)[s — ]
SHI(—Y (K), =Ty, )i, — it
and
(3.1) SHI(~ Y (K), —T'», ) P SHI(-Y(K), P, ) — 5]

Wt T /
o

~ N A

@(7}/([()7 71—1#7 S) [i%az - Z.ﬁuzz]
(3) For n€Z so that qn41 + qn = q, i.e., n = —1, there are two bypass exact triangles:

fp G ] P

(3.2)  SHI(-Y(K),~Ly,S)[i SHI(—Y (K), ~Tpy1, S)[ith 0y — 41

n
¢+’nT %

ko S 2 wﬁn 1 s “ ~
(3.3)  SHI(—Y(K), T, S)[ils0p — ilug) ————— SHI(~Y (K), ~Tpy1, S)[it;, — it 1]

max max min

¥ T /
v

~

SHI(~Y (K), ~T,., )

Remark 3.11. The maps ¥% , and ¢* , are called bypass maps, which are contact gluing maps
induced by bypass attachments on balanced sutured manifolds. The exact triangles in Proposition
310 are called bypass exact triangles. In this paper, we will omit the definitions and focus on
their algebraic properties.
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Lemma 3.12 (|LY20, Lemma 4.37]). For any surgery slope q/p, consider the bypass maps ¥
and P* . in Proposition [3.10. For any n € Z, we have two commutative diagrams

L2 ~
(3.4) SHI(—Y( i SHI(—Y (K), —T'ni1)
m %ﬁ:
SHI
and
11’7 m+1 ~
(3.5) SHI(~Y ( ), ~Ths1)

SHI(—
\ %
SHI(—

The similar commutative diagrams hold if we switch the roles of V% , and ¥*

In the following lemma, we abuse the notations for bypass maps so they also denote the restric-
tions on some gradings associated to S.

Lemma 3.13 (|JLY20, Lemma 4.18]). For any n € N, the map
dji ntl @(7}/([()’ 71—\1”’ S’ Z) - @(7}/([()5 FnJrla S (= Ymin T %n-ﬁ-l)

mn

is an isomorphism if i <4 — 2g(K). Similarly, the map

+ntL)

mam max

1/} n+l SHI( (K)v —f‘,“ Svl) - @(7}/([()7 FnJrla S i —
is an isomorphism if i =, + 29(K).

Lemma 3.14 (|JLY20, Lemma 4.22]). Suppose n € N satisfies ¢, = q + 29(K), and suppose i,j € Z
with

’zfnln+2g(K)<17]<% 729( )a andi*j:q-
Then we have

SHI(—Y(K),—T', S,i) =~ SHI(-Y (K), —T', S, ).

Thus, we can divide SHI(—Y (K), —I',) into three parts: the top 2¢(K) gradings, the middle
gradings, and the bottom 2¢g(K) gradings. All parts stabilize by Lemma and the spaces in
the middle gradings are cyclic by Lemma 3141 Moreover, by Proposition B3l we have a canonical
isomorphism

@(7]\45 Y Sv Z) = @(7]\47 - Sv 72)
If OM =~ T?, we can identify —v with v, which induces an involution
(36) byt ﬂ(_Mu -7, Su Z) - @(_Mu 75 57 Z) i @(_Ma - 57 —Z)

Hence the spaces in the top 2¢g(K) gradings and the bottom 2¢(K) gradings are isomorphic. The
following theorems imply that spaces in the middle gradings encode information of I*(—Y).
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Lemma 3.15 ([LY20, Lemma 4.11], see also |[GLW19, Section 3]). Suppose K < Y is a null-
homologous knot and suppose the pair (Y, K) is obtained from (Y,K) by a q/p surgery. Suppose
further that the sutures I'y, are defined as in Definition[3.3. Then, there is an exact triangle

7 f‘n+1)

X /
where F,, is the contact gluing maps associated to the contact 2-handle attachment along fi =

qu+pA < 0Y (K). Furthermore, we have four commutative diagrams related to P g1 and P Ly,
respectively

- ~
SHI(—Y( Sus SHI(~Y(K), ~Ths1)
\ /
and
w#» n+1 ~
SHI(-Y( ), —Tni1)

SHI(—
\ %
Theorem 3.16 (|[LY20, Proposition 4.28]). Suppose n € N satisfies qn, = q + 29(K). Then there
exists an isomorphism

—29(K) —i) = I*(=Y),

’"max

o
F.: @ SHI(-Y (K), T\, S, i

where F), is the restriction of F,, in Lemma[3 13

Definition 3.17. For a fixed integer ¢ > 0 and any integer s € [0,q — 1], suppose [s] is the image
of s in Zg. Define

F(-Y,[s]) == FL(SHI(- Y (K), ~T'n, 8,7

?"max

~2(K) — 8)) < IF(=Y),
It is well-defined by isomorphisms in Lemma B.13] and commutative diagrams in Lemma [3.15]

Proposition 3.18 (|[LY21H, Corollary 1.20]). Suppose K is a knot in an integral homology sphere
Y and suppose n is an integer. Then —Y_,(K) is an instanton L-space if and only if for any
[s] € Zjy,|, we have
dime IF(=Y_,(K),[s]) = 1.
Remark 3.19. Proposition also follows from the special case (M,v) = (Y(1),6) in |[LY2la,
Theorem 1.1]:
Xen(IF(Y)) = X(HE(Y)) = Y} heZ[Hi(Y)]/ + H\(Y),
heHq (Y
where Y is any rational homology sphere.
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3.4. Two spectral sequences.

In this subsection, we construct spectral sequences from @(f}?, K )to T ji(f}A/) by bypass exact
triangles in Proposition

For a fixed integer ¢ > 0, any fixed large integer n, and any integer ¢, we have the following
diagram of exact triangles

(3.8)
YY1 f‘i,+ 11’1711 f‘i"'— wi;?a f‘i’+
n+1 n n—1 n—2
W, wm/ \ WY s
wz*; Vi v
¥ B
¥ / w . gl
/M \ LN L
3, — iy—
P n2 1 wf]l Fn P g1 ntl

where we write

F;;Jr = u(7}/(1() Fk? S i+ Zmzn Yonin T Z7nu,m - ’Zﬂma;ﬂ)
f‘;-cyi = @(7}/([() Fk? S i+ Zma;ﬂ Ynaz T Z7rnn - gﬁun)

for any k € N, and we abuse notations so that the maps ¥ ,,9* . also denote the restrictions on

corresponding gradlngs Note that ¢*  and ifnm are the maximal and minimal nontrivial gradings

max

of SHI(-Y (K), fI‘*) associated to S, respectively. By direct calculation, we have

T N .,

(3.9) F;ik = F;ik | for k> L7 tmin and F;N_Lk —0for —k < ¢ Zmam7
q q

~. ~; o . i .

(310) Fiz:k >~ +k 1 for k > Ymaz — and I‘ h = =0for —k < Ymin Z.
q q

Theorem 3.20. There exist two spectral sequences {(Ey +,dy +)}r=1 and {(Ey —,dy _)}r=1 with
By, =B, _ = KHI(-Y,K)

induced by evact triangles in (3.8) involving % , and P* ., respectively. They are independent of
the choice of the integer n. Suppose {(Eyr +,dy 1)}r=1 converge to Gy, respectively. Then there are
isomorphisms

Gy = I*(—-Y).
Proof. The results about the spectral sequences are essentially from [LY20, Section 4.5]. Here we
give an alternative proof based on unrolled exact couples introduced in Subsection 211
The exact triangles about % , form an unrolled exact couple in the sense of Definition 21 For
simplicity, we consider the direct sum of the unrolled exact couples about ¢ = 79+ 1,...,ip + g for

some ig so that i € [¢%. i ]. Then the first page is the same as

KHI(-Y,K) = SHI(~Y (K), -T,)
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Since there are only finitely many nontrivial gradings of associated to S, this unrolled exact couple is
bounded. Proposition [Z3] provides a spectral sequence {(Ey +,dy +)}r>1 with By = KHI(-Y, K).
Since

%ﬁm*%fnm=kqfq071+2g(K) and it — it =q— 1+ 2g(K),

max mzn

for any integers i > i bmand k<n—(qg—1+2g(K))/q, we have

(3.11)

(7’ + anzn - Z%zn + i%am Zﬂma;ﬂ) - ifnam i+ ( min ifnaw) + (i:lnam - Z%zn) Zﬂma;ﬂ
=i—(kq—qo—1+29(K))+ (ng—qo—1+29(K))— i“mm

i + (n - k)q - %ﬁmm

For such k, we have 1"Z ' = 0. Thus, by Theorem 4, we know that {(E, ., d, +)}r>1 converges to

io+q R
@ I o SHI-Y (K), —T )
i=ig+1
for some large integer . The calculation in (BT also indicates that G lives in the middle gradings
of SHI(—Y (K),—I',1;). Hence by Lemma B4 and Theorem 316, we know that G, = I¥(—Y).
The independence of the integer n follows from Lemma and Lemma
Similar argument applies to exact triangles involving * , and we obtain another spectral se-

quence {(Ey _,d, _)}r>1 with By _ = KHI(—Y, K), which converges to
G- < SHI(=Y/(K), ~T'n 1)
in middle gradings for some large integer I. Also, we have G_ = Iﬁ(ff/). O

3.5. Bent complexes.

In this subsection, we construct the bent complex and relate its homology to negative large
surgeries. The construction and the name are inspired by Heegaard Floer theory (c.f. [Ras07,
Section 4.1], [RR117, Section 2.2]; see also [0S04a, Section 4]).

Construction 3.21. Suppose i = g + pA. Consider the spectral sequences {(Ey +,dr +)}r>1 and

{(Ey,—,dr—)}r>1 constructed in Theorem 3201 By fixing a basis of KHI(— Y, K), Construction 28]
provides two filtered chain complexes

(KHI(—Y, K),dy) and (KHI(-Y, K),d_)

such that the induced spectral squences are {(E, +,d, +)}r>1 and {(E,_,d, _)},>1, respectively.
For any integer s, the bent complex is

Ag _A @SHI fuusus+kQ)7dS)7
keZ
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where for any element x € SHI(-Y (K), —f‘u, S, s+ kq),

di(x) k>0,
ds(z) = < dy(z) +d_(z) k=0,
d_(z) k <O0.

It is easy to check ds o ds = 0.

Remark 3.22. Since SHI is a projectively transitive system, the maps d, ; and d,,_ only well-defined
up to multiplication of a unit. However, the kernel and the image of a map are still well-defined, so
we can still define exact sequences for projectively transitive systems. Moreover, if f : A — B and
g : A — C are maps between projectively transitive systems, though the map

f+g:=(f9):A->BaC

is not well-defined, its kernel Ker f n Ker g and image Im f @ Im g are well-defined, so there is no
ambiguity to consider the homology of the bent complex. Alternatively, by discussion in Subsection
B we can always fix closures of corresponding balanced sutured manifolds and consider linear
maps between actual vector spaces, at the cost that equations between maps only hold up to
multiplication by a unit.

The main theorem of this subsection is the following.

Theorem 3.23. Suppose i = qu + p\ with ¢ € Ny. For any integer s, let H(As) denote the
homology of the bent complex Ag in Construction[T 21 For any integer n satisfying (n—1)q = 2¢g(K),
we have an isomorphism for some integer j,:

(3'12) Qg n - H(As) = @(—Y(K), 7'725\_(2”_1),1, S, s+ ]n)

Suppose the mazimal and minimal nontrivial gradings of SHI(—Y (K), —72;\_(2n_1)ﬂ) are i, and
i which can be calculated by Lemmal38. Then we have

min’

Jn = i = fin + gz = tae = inaz — bz + bin — Toin-
Remark 3.24. By Definition B.7, we have ¢¥,,, — % . = 2¢g(K)+y — 1. Then
(Frrin=min + Tmaz = taz) = (naz = az + imin = tin)
= 2ifae + yin=) = (e = Unin) = (s — Toin)
=2(ng—qo—1)—(2n—1)g—2¢0 — 1) — (¢ — 1)

= 0.

Hence j,, in Theorem [3.23] is well-defined.
Proof of Theorem [F2Z3. We consider two cases. The first case is special, and we use the octahedral
axiom to prove it. The second case is more general, and we reduce it to the first case. For the bent
complex Ay, we fix ¢ = s in the diagram (B.8]).

Case 1. Suppose 'y =T} ™ =0 for k < n — 2 in the diagram (3.5).

In this case, higher differentials d, + for r > 2 vanish and the maps

-1, Pix it
P T = I
are isomorphisms. Hence _ _
A= ol el f),
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where
f f; 1 +1 @ F
f(z) = (B+(2), ﬂf(‘r))

is the restriction of (¢ , ;(x),¥" , _;(z)). Define g : r ot @I‘ — F 7, to be the projection
map. Then we apply Theorem 2.7 to

X=Tiy =00 @lh-,, z=T5" X' =107 V' =Ti* 2/ = H(A,).

n—1» n—1» n—1»

Then there exist maps ¢ and ¢ satisfying the following diagram

P - HA)) = -

Let

+ wa

be the restriction of ¢! . By the proof of Theorem 27, we know that ¢ is constructed by f. Since
4+ = Ker(8,) @ Coker(8,),

the map ¢ is zero on Coker(Sy) and the same as S_ o ay on Ker(8). Thus, we have

(3.13) H(A,) = H(Cone(¢)) = H(Cone(S_ o ay)).

. TV,
gy Fn

Note that we assume fi = qu + pA for ¢ = 0 and A\ = gopu + po satisfying Definition 35l When
n is large, the coefficient of p in

~1!

i i=mnj— X = (ng— qo)p + (np — po)A
is positive. By Definition [3.5] we set

Ni=A=(n=1)p= (g0~ (n—1)q)u+ (po— (n—1)p)A.
Then
N4 i =pand N — ' =2)— (2n —1)4.
Note that Vux4yu = Y—zr—yu- Applying the diagram (B.3) with ¢ , and W  switched to

Do) =y = Do Doa () = 93, = Dy and To (i) = 75, = Ty,
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we obtain the following commutative diagram

~ Pl () ~

(3.14)  SHI(-Y(K),-T (")) ’ SHI(—Y (K), =To(

(N (i)

SHI(-Y (K), ~Tu(it'))

=

2
—
=

where the notations /i’ in bypass maps indicate that they correspond to fi’. By comparing the
grading shifts, we have

Vi@ = - and @2 (i) = s
Indeed, this can be obtained by a diagramatic way in ILY20, Remark 4.17].
Let 6 : I'* — T';'~ ) be the restriction of

~

Y* o(@') : SHI(~Y (K), ~T,) — SHI(~Y (K), ~T'_1).

Then [BI4) implies § = f_ oy = ¢.
Applying the negative bypass triangle in Theorem to

Du(i') = vpr = T, To(@) = 75, = Tnr, and Ta(@) = Y = Yos—@n—1)a
we have the following exact triangle

(315)  SHI(-Y(K), -To(i)) ) SHI(~Y (K), T ()

M L)

SHI(-Y (K), ~T, (i)

By grading shifts in Theorem B.10] the restriction of [BIH]) on a single grading implies

(3.16) H(Cone(d)) = SHI(=Y (K), =Yo5_(2n—1)3> 5> Jn)
Then the isomorphism in (312)) follows from BI3) and BI6).
Case 2. We do not suppose F ot — F = 0 for all ¥ < n — 2 in the diagram (3.8). Since
(n—1)g=2g(K) and i€ [:", zﬁmz] we have
i— iZun i— /zynam /Zynax — iZun g—1+ 29(K)
| 5| | < | = <n.
q q q q

By (89) and B.I0), we have f‘é’i =0

In this case, let
= ( @ SHI(-Y(K),—T',,S,s + kq),ds)
keZ\{0}

be the subcomplex of A,. The quotient A,/ A’ is SHI(-Y (K), ff#, S, s) with no differentials. Then
we have a long exact sequence

c o H(AY) — H(A) — H(AJAL) 25 H(AD{1} — -
Since f‘é’i = 0, by Theorem 2.4] we know that
(3.17) H(A) =T ol
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It is straightforward to check dx = (B4, S-) under the isomorphism (3IT). Then by Case 1, we
have

H(A,) ~ H(Cone(dy)) =~ H(Cone(f)) =~ H(Cone(¢)) =~ SHI(—Y (K), ~Voie@n—1)p> S Jn)-

O
Then we prove the large surgery formula for negative surgeres.

Theorem 3.25 (Theorem[T.22] n > 0). Suppose i = qu+p\ with ¢ € Ny and suppose \ = qoft+Dpo
is defined as in Definition[3.] Note that when (q,p) = (1,0), we have (go,po) = (0,1). For a fized
integer n satisfying (n — 1)q = 29(K), suppose

Q=np—\= (ng — qo)p + (np — po) A
']

For any integer s, suppose [s'] is the image of s" in Z ). Suppose

min = ~(00 = g0 — 1) = [~ 5] + 9(K) and sz = (00— a0 — 1) ~ [152] — g(K)

and suppose an integer s € [Smin, Smaz]- For such n and s, there is an isomorphism
H(A_y) = I* (=Y, [5 — $min))-
Remark 3.26. When (n — 1)q¢ > 2¢g(K), there are more than (ng — qAO) integers in the interval
[Smins Smaz]- Thus, the bent complexes contain all information of T ﬁ(fYﬂ/).
Proof of Theorem[3.23 Since (n — 1)q = 2¢g(K), we apply Theorem [B.23] to obtain
H(A_,) ~ SHI(-Y(K), ~Yos—(2n—1)p> > Jn — s).
We adapt the notations
N=A—(m—-=Dpand N — @/ =2X\— (2n—1)ji = (2g0 — (2n — 1)q)p + (2po — (2n — 1)p)A

from the proof of Theorem [3.23] Then fl([/) = Yoi_ . Since (n — 1)q = 2¢g(K), we have

(2n-1)a
(2n —1)g — 2q0 = ng — qo + 29(K).
Hence we can apply Theorem to obtain

F(=Y, [s]) = SHI(=Y (K), = Vo5 _an_1)j> s tnaz — 20(K) = 5).

max
By direct calculation, we have

. oot i n o o )
In Smin Tlmax Ymaz + Ymin Ymin Smin

B —20(K) — (g — g0 — 1) — =22 4 g(K) — smmin
:’zgnam - 2g(K)

For any s € [Smin, Smaz ], We have
j" - zigrnn - ifnln + /anam - iﬁmaz - S
i q—1
Zlmin + 29(K) + (ng —qo = 1) = [~ — g(K) =5
>+ 2g(K).
Thus, the isomorphism follows from Definition B.17 and Lemma [3.14] O
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Finally, we state an instanton analog of |[OS08, Theorem 2.3] and |[OS11, Theorem 4.1], which is
an important step of the proof of the mapping cone formula (c.f. Section [|]).

Construction 3.27. Following notations in Construction 3211 For o € {4, —}, define
BS = B,(~Y, K) i= (D SHI(~Y (K), ~T\s, S, + kq),d.)

S

keZ
and define
7, : Ay — B
by
F;_(x):{x k>0, andws_(;v)={0 k>0,
0 k<O, 0 k<O,

where x € SHI(-Y (K), —f‘ﬂ, S, s + kq).

Suppose i = qu + pA with ¢ € N;. For n and s in Theorem B.23] let H(As), H(BY), H(BY)
be homologies of complexes in Construction B2T] and let (w*)*, (73 )« denote the induced maps on
homologies. Let j, be the integer in Theorem j and write I'# for

ﬂ(*Y(K), - (2n—1)i> S, jn + 5)

By Theorem [3.23] we have an isomorphism

We use notations in ([B.8]) and set ¢ = s. Let
4t f\s,ﬁ - f‘f{-,—
be the restriction of ¢! x (') in the proof of Theorem 323l Choose [ as in the proof of Theorem

3.201 so that f‘fHJ_rl c G4. Note that H(BE) = n+l by the proof of Theorem [3.200 Let

S+
+ n+l * F o Ffl+l
be the composition of 1/}i+nk+k+l for k =0,...,l — 1. Similarly, let
p_: Tt f‘flf
be the restriction of ¢} ,(4’) and let
—n+l P) HFS’ICG_

be the composition of fork=0,...,1—1.

n+k+l

Proposition 3.28. Then the following diagram commute

(m)x

H(A;) ———— H(BY)

~ (Pi 190+
s.f £ttt Pt
r I‘nH,

Proof. The proof is straightforward by the proof of Theorem 323 O
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Remark 3.29. By direct calculation, the difference of gradings of Fi:l and I‘ s

(szrl _ ,Zn

4 An+l 2 4
min min T Ymaz — zfnam) - (Z%J(rzm ” . )

~ lnaz T Zmin — bmin

= _(E%J(rzfn - thlz) + 2( Ymaz — %%zn) - (/Zﬂma;ﬂ - iZun)

=—(n+1)q+q+2(ng+q) —q

=(n—-1-1)g+ qo.
SinceAgcd(q, qo) = 1, by Lemma [B.14] the space ffl:l and ffl;l correspond to I*(—Y", [so + qo]) and
I*(=Y,[s0]) for some integer so, respectively. Note that the core knot corresponding to ji = qu -+ pA
is isotopic to the curve gou + poA on dY (K).

3.6. Dual bent complexes.
In this subsection, we construct the dual bent complex and relate its homology to large positive
surgeries. Proofs are similar to those in Subsection [3.5] so we only point out the difference.

Construction 3.30. Following notations in Construction 321l For any integer s, define the dual
bent complex as

AL =AY (— = (P sHI(— ,—T, S, s + kq),dY),
keZ
where for any element x € SHI(—Y (K), ff#, S, s+ kq),
d_(z) k>0,
de(z) =< dy(z) +d_(z) k=0,
d4(z) k < 0.

Similar to Theorem [3.23] and Theorem [3.25] we have the following theorems.

Theorem 3.31. Suppose i = qu + p\ with q € N+. For any integer s, let H(AY) denote the
homology of the bent complex AY in Construction [Z30. For any integer n satisfying (n — 1)q
29(K), we have an isomorphism for some integer j\ :

(3.18) ay, + H(AY) = SHI(=Y (K), =%a5 4 (ani1)p0 S8 + I )-

Suppose the mazimal and minimal nontrivial gradings of SHI(-Y (K), —72;\+(2n+1)ﬂ) are it and
v

Zmzn’

which can be calculated by Lemmal3 8. Then we have

v ten _p _ v ren jen_ tp
jn - zﬁaz Ymaz + Ymin Ymin = Zmin Yinin + Ymax Ymaz-

Theorem 3.32 (Theorem[I.22] n < 0). Suppose i = qu+pA with ¢ € Ny and suppose A= qoft+DpoA
is defined as in Definition[3.4] Note that when (q,p) = (1,0), we have (go,po) = (0,1). For a fized
integer n satisfying (n — 1)q = 2¢9(K), suppose

f" =mnji+ X = (ng+ qo)u+ (np + po)\.

For any integer s', suppose [s'] is the image of 8" in Z(nqiqy)- Suppose

Stim = —(n0 + @ — 1) — [~ L1 4 (k) and 500 = (g + g0 — 1) — [L52] — g(K)

2 2

v . . .
ozl For such n and s, there is an isomorphism

H(AY ) = IN=Ypr, [s — stin])-

mn

and suppose an integer s € [8Y,..., 8

mzn’
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Proof of Theorem [3.31] Instead of using the diagram [B.8, we use the following diagram of exact
triangles from Proposition [3.10]

(3.19)

w—'r: w7n771 . w 'n; 2 .

+ +,—n+1 ,+ +,—n + +,—n—1 +
Fl—n-ﬁ-l Fl Fl—n—l Fz—n—2 e
\ wu/ w+ —n—1 \ wi,/
Wit Wi

. fﬁrq .

W Y wIL

——n—2 —,—n—1 wi,fn
- Fl—’;—2 FZ) I‘Z)7_7, FZ—):H-I -

—n—2 n—1 —n
W U, U

where we write

~

I = SHI(-Y (K),—T,, S, %)

p = 24l
f‘ﬁ-]: = M(—Y(K) A —k> S i+ Z7nu,m — Ymax + 2;1?71 - ifnln)
Ty = SHI(=Y (K), =T, Sui ity = Gty + b — i)

for any k € N, and we abuse notation so that the maps ¥ ,,9* , also denote the restrictions on
corresponding gradings. In this case, we have

M 4 e

(320) FZ_: k:Flt b1 for k > Ymaz 7 and I‘Z :+k_0f0r k< Ymin Z,
9 q

o~ i Z_iZun N, — i_/zumam

(3.21) Fnkzl"’ _pq for k> —" and I'2 | =0for —k < —%.
4 q

By Proposition and Theorem 2.4] there exist spectral sequences from

ch

keZ

to f‘i_’:_l and f‘i_’;_l for some large I. By Lemma [3.12] those spectral sequences are isomorphic to
{(Er +,dr+)}r>1 and {(Er,—,dr—)}r>1 in Theorem [B220] hence we can define the dual bent complex
by maps in (B319).
By Definition B35 we set
g =nji+ Xand N = —f.
Then
N — "= =X—(n+Dpand N — 24" = —2X — (2n + 1) .
Note that yoa4+yu = Y—zr—yu-
Similar to the proof of Theorem [3.23] we consider two cases and finally obtain that
H(AY) = Cone(y7", + 4", : "} @T")) - T,
= Cone(y2 _,,_j o7, [T )
Eﬂ(_i/(l(% _725\+(2n+1)ﬂ7 S7 1 + jn )
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Proof of Theorem [3.32. Similar to the proof of Theorem 325 the isomorphism follows from Theo-
rem [3.16] Definition B.17 and Lemma [3.141 |

The following proposition explains the name of the ‘dual bent complex’.
Proposition 3.33. AY(-Y, K) is the dual complex of A_s(Y, K).
Proof. Suppose (Y,K) = (=Y, K) is the mirror knot of (Y, K). Note that (=Y, K) = (Y, K).

Suppose S is the Seifert surface of S of K. Then —S is the induced Seifert surface of K. By
Proposition [3.3] we have canonical isomorphisms

SHI(~Y (K), -y, —S,i) =SHI(Y (K), ~T_,,, —S, )
~SHI(Y (K), -T_,, S, —i)
~Homg (SHI(-Y (K), —T'_,., S, —i),C)

Then this proposition follows from the fact that both diagram (B8] and diagram (B.I9) can be
used to define the bent complex and the dual bent complex. O

3.7. Grading shifts of differentials.

In this subsection, we study the grading shifts of differentials d; and dy and relate the bent
complex to the dual bent complex. First, it is straightforward to check from the construction that
the map d, increases the Z-grading and d_ decreases the Z-grading. So we focus on the grading
shifts of dy and d_ on the relative Zs-grading.

Convention. Throughout this subsection, ‘grading’ means the relative Zs-grading and we set M =
Y (K) for a rationally null-homologous knot K < Y. The bypass map Y% , and the corresponding
negative one ¢* . are from SHI(—M, —v1) to SHI(—M, —72) for some 71 and 72 consisting of two
parallel simple closed curves.

Since all bypass maps are homogeneous (they are constructed by cobordism maps, c.f. the proof
of [BS184, Theorem 1.20]), the differentials d and d_ are also homogeneous. To study the grading
shifts of dy and d_, we first show that bypass maps ¥% , and ¥* , have the same grading shift.
We start with the following lemma.

Lemma 3.34. Suppose ¢ , and * . are two bypass maps from SHI(—M, —~1) to SHI(—M, —v2)
and suppose t, and L, are involutions defined in (36). Then we have

* *
—k Lya © 1/}7,* © byg -

Proof. By construction in [LY20, Section 4.2]), that the bypass arc related to 1} , on (Y (K), Yax+yu)

is the same as the bypass arc related to ¢* , on (Y (K), =Yzx+y,). Hence we show two compositions
of maps are the same. 0

Corollary 3.35. The involution , induces an isomorphism between spectral sequences {(Ey 1, dr +)}r=1
and {(Er—,dr—)}r=1 constructed in Theorem and hence induces an isomorphism between the
chain complexes

(@(_Yv K)7 d+) and (m(_K K)7 d—)

Moreover, it induces a canonical identification between A_g and As.
Lemma 3.36. Suppose 1 , and * , are two bypass maps from SHI(—M, —v1) to SHI(—M, —2).

If x is a homogeneous element in SHI(—M, —v1), then ¥% ,(x) and ¥* ,(x) are homogeneous ele-
ments in SHI(—M, —v2) and they have the same grading.
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Proof. By Lemma [B34] it suffices to prove that ., preserves the grading for any v < 0M. By
construction of SHI(—M, —v) in [KM10b, BS15], we can construct a closure (Y’, R,w) of (—M, —v)
with g(R) > 2 and take the (2, 2¢g(R) —2)-eigenspace of (u(pt, u(h)) on I*(Y”). It is straightforward
to check that (Y’, —R,w) is a closure of (—M,~). Since v and —v are isotopic on dM = T?, there
is a diffeomorphism between (Y, R,w) and (Y’, —R,w). Moreover, under this diffeomorphism, the
involution ¢, becomes the isomorphism between the (2, 2g(R) — 2)-eigenspace and the (2,2 —2g(R))-
eigenspace of (u(pt, u(h)) on I“(Y”). Note that I(Y”’) has a Zg-grading and p(pt) and p(R) have
degree —4 and —2, respectively. Explicitly, the involution sends

w !/
(’Uo,1}1,1}2,03,1}4,1}5,1}6,”7) € I (Y )

to
(fUOv’Ulvina7’037’047’0557’06771}7)5

which preserves the Zs-grading induced by the Zg-grading. 0

Proposition 3.37. Suppose di and d_ are differentials on KHI(-Y, K) induced by spectral se-
quences {(Er +,dr 4)}rs1 and {(Ey—,dr—)}rs1 in Theorem [320. For any homogeneous element
x € KHI(-Y, K), the gradings of d(x) and d_(x) are different from the grading of x.

Proof. We only prove for d(z). The proof for d_(z) is similar. We adapt notations in diagram
B3). Without loss of generality, suppose z € I‘L. Consider the projection y of d (x) on I‘ffkq for

some k € N;. By construction of d, there exist homogeneous elements z € f::1 and w € f‘:;_rk S0
that

—k - —k
Yy= dji,u (w) and = i,n—l(x) = wi,’l?—l O---0 wi,n—k-ﬁ-l(w)'
By Lemma [B.36] the element

2= 2;2—1 00 wﬁfnkfkﬂ(w)

has the same grading as z. By Lemma [3.12] we have

PLNE) = .

Define
w:=t N (z') and o = " (2).
By Lemma B30 they have the same grading. By B.12] we have
wi,u(u,) =Y.

Let gry(w) denote the grading of 2 and let gry(¢¥ ) denote the grading shift of ¢} ,. Then we
have

gra(y) — era(z) = (gra(y) — gra(u')) + (gra(u) — gra(z")) + (8r2(2) — gra(z))
= gfz(qﬁi,#) + gry( iinl) + gfz(qbi,nﬂ)
= 17
where the last equation follows from the fact that the bypass exact triangle shifts the grading (the
bypass exact triangle comes from the surgery exact triangle, c.f. the proof of [BS18a, Theorem

1.20]). Since any projection of di(z) has different grading from z, the we know that d(x) has
different grading from . g



30 ZHENKUN LI AND FAN YE

4. VANISHING RESULTS ABOUT CONTACT ELEMENTS

In this section, we study contact elements in Heegaard Floer theory and instanton theory. In
particular, we prove Theorem [[.23] Theorem [[.2Z5] and a vanishing result for cobordism maps. We
only need Corollary [4.16] in the rest sections.

4.1. Contact elements in Heegaard Floer theory.

In this subsection, we review the strategy to prove the vanishing result about Giroux torsion in
I[GHVHMOS].

Suppose (N, §) is a contact 3-manifold with convex boundary and dividing set I' on 0N. Honda,
Kazez, and Mati¢ [HKMO09] defined an element ¢(N, T, §) in sutured Floer homology SFH(—N, —T),
called the contact element of (N,£). When (N, €) is obtained from a closed contact 3-manifold
(Y,¢') by removing a 3-ball, the element

¢(N,T,¢)e SFH(—N,-T) ~ HF(-Y)

recovers the contact element ¢(Y,¢’) € ﬁ'(fY) defined by Ozsvath and Szabé |OS05al.
Consider the Giroux torsion defined in Definition [[.24 We have the following vanishing result.

Theorem 4.1 (|[GHVHMORK, Theorem 1]). If a closed contact 3-manifold (Y, &) has Girouz torsion,
then its contact element ¢(Y,&) € HF(=Y') vanishes.

Remark 4.2. The statement of Theorem [4.1] in [GHVHMOS] is about Z coefficient. However, since
the naturality of SFH is only proved for Fy coefficient |[JTZ18], the contact element in Z coefficient
is not well-defined. Some progress about the naturality for Z coefficient is made in [Gar19].

Remark 4.3. There are many partial results and applications of Theorem [l See the introduction
of [GHVHMOS].

Following the notations in [Hon00, Section 5.2], consider a basic slice Ny = (T2 x I,£) with the
dividing set T'y on T2 x {i} for i = 0,1 consisting of two parallel curves of slopes so = o0 and
s1 = 0. There are two possible choices of tight structures on Ny corresponding to two bypasses
wi,o and ¥* o- They are both positively co-oriented but have different orientations. Hence the
relative Euler classes differ by signs. Let & be the tight structure on Ny corresponding to 1/)‘;70.
Let Nux be obtained from Ny by rotating counterclockwise by 4. Note that N is the basic slice
corresponding to wﬁ,o and Nzzor = Nzz. Define

(Ns, () = No U Nz U Ny UNSTﬂ U Noyp and (Ny, (7 ) = Ny uNaTW U Noy UNSTW U N3y

Then Theorem [A1] follows from the following three lemmas.

Lemma 4.4 (JGHVHMOS, Lemma 5]). A contact closed 3-manifold (Y,€) has Giroux torsion if
and only if there exists an embedding of (N, Ts,(F) or (Ny, Ty, () into (Y, €).

Remark 4.5. In the definition of Giroux torsion, there is no condition on the orientation of the
contact structure. By construction, the contact structures ¢;* and (; differ by orientations. In
IGHVHMOS], the authors did not deal with these two contact structures separately (c.f. the defini-
tion of {p in [GHVHMOS]) since the proofs are almost identical. Also, in the original statement of
IGHVHMOS, Lemma 5], the slopes of dividing set on 0N, are —1 and —2, respectively. However,
there is a diffeomorphism of T2 x I sending the slopes to o0 and 0, respectively. Note that under
this diffeomorphism, the slope oo is sent to —1.
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Lemma 4.6 (J[HKMO0Y, Theorem 4.5]). Let (Y, ) be a closed contact 3-manifold and N 'Y be a
compact submanifold (without any closed components) with convex boundary and dividing set T. If
¢(N,T¢|n) =0, then c(Y,€) = 0.

Lemma 4.7 (From the proof of [GHVHMO0S, Theorem 1]). The elements c(Ny, D, (") and ¢(Ny, Ty, (1)
vanish.

4.2. Construction of instanton contact elements.

In |[BS16], Baldwin and Sivek constructed a contact invariant in sutured instanton theory which
we call the instanton contact element. In this subsection, we review the construction and prove
Theorem [[.23

Definition 4.8. Suppose (M,~) is a balanced sutured manifold. A contact structure £ on M is
said to be compatible if M is convex and + is the dividing set on dM.

A contact handle is a 3-ball B® with the standard tight contact structure. The attachment of
B3 to a balanced sutured manifold (M,~) is called a contact i-handle attachment in following
cases:

(1) i = 0 when the resulting manifold a disjoint union (M,~) u B3.
(2) i = 1 when B3 is attached to (M,~) along two points on the suture .
(3) i = 2 when B3 is attached to (M,~) along a simple closed curve § on 0M with |§ N 7| = 2.

Suppose (M,~) is a balanced sutured manifold. Let (M’,+") be the resulting manifold after
attaching a contact i-handle. Baldwin and Sivek [BS16, Section 3] constructed a map

(4.1) C:SHI(—M,—~)— SHI(—M',—+").
We sketch the construction as follows.

(1) When ¢ = 0 or 1, we can construct the same closure for (M,~) and (M’,~) and define C to be
the identity map.

(2) When i = 2, suppose § < 0M is the attaching curve of the contact handle. Then a closure
of (M’,~') can be obtained from a closure of (M,~) by performing a O-surgery along §, with
respect to the framing from 0M. Then C is induced by the corresponding cobordism between
closures.

Suppose (M,v) < (M’,~") is a proper inclusion of balanced sutured manifolds and suppose ¢ is
a contact strucutre compatible with (M'\intM,~" U (—7)). Based on maps associated to contact
handle attachments, we can construct a contact gluing map

®¢ : SHI(—M, —~) — SHI(—M', —').

The first author [Lil8b] showed that the contact gluing map is functorial, i.e. it is indepedent of
the contact handle decompositions and gluing two contact structures induces composite maps.

For a balanced sutured manifold (M,~) and a compatible contact structure £, there are a few
ways to decompose ¢ [HKMO09, BS16].

Partial open book decomposition. A partial open book decomposition is a triple (S, P, h)
where S is a compact surface with non-empty boundary, P < S a subsurface, and h : P — S an
embedding so that h is the identity on P n 0S.

Contact cellular decomposition. A contact cellular decomposition of £ over (M, ) is, roughly
speaking, a Legendrian graph K < M so that 0K < v and M\intN (K) is diffeomorphic to a product
[—1, 1] x F for some surface F' withboundary and £ restricts to the [—1, 1]-invariant contact structure
on M\intN(K) =~ [-1,1] x F.
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Contact handle decomposition. A contact handle decomposition is a decomposition of
(M,~,€) into contact 0-, 1-, and 2-handles described above.

These three decompositions can be related to each other as follows.

Suppose we have a contact cellular decomposition, i.e., a Legendrian graph K < M so that
M\intN (K) is a product manifold equipped with the product contact structure. Then M\intN (K)
equipped with the restriction of £ can be decomposed into a contact 0-handle and a few contact
1-handles. Furthermore, each edge of the Legendrian graph K corresponds to a contact 2-handle
attached along a meridian of the edge. This gives rise to a contact handle decomposition of (M, , ).

Suppose we have a contact handle decomposition of (M, v, £), we can obtain a partial open book
decomposition as follows. All 0- and 1- handle form a product sutured manifold ([—1, 1] x S, {0} x255).
Suppose 2-handles are attached along curves 41,..., ,. Let P < {1} x S be a neighborhood of
(01 V- U dy) N {1} x S. Isotope (61 U -+ U dy) N {—1} x S through [—1,1] x S onto {1} x S.
Let h : P — S be the embedding so that h|ss~sp is the identity and d; n {1} x S is sent to the
image of ¢; x {—1} x S under the isotopy for ¢ = 1,...,n. Then (S, P,h) is a partial open book
decomposition of (M, ~, ).

Suppose we have a partial open book decomposition (S, P,h) of (M,~,£). We know that
([-1,1] x S,{0} x 0S) is a product sutured manifold that admits a product contact structure
&o. This can be decomposed into a contact 0-handle and a few contact 1-handles. Let a1, ...,a, be a
collection of disjoint properly embedded arcs on S so that a; = P and S — (a1 U - - - U ay,) retracts to
S —P. Let ¢; be the union of a; and h(a;). Then (M, ~, &) is obtained from ([—1,1] x S, {0} x 85, &)
by attaching contact 2-handles along all §;.

Definition 4.9 (|BS16]). Suppose (M,~) is a balanced sutured manifold and £ is a compatible
contact structure. Suppose £ has a partial open book decomposition (S, h, P). Let d1,..., 0, be the
attaching curves of the contact 2-handles so that (M, ~, &) is obtained from ([—1,1] x S, {0} x 9.5)
as above. Suppose the element 1 is the generator of

SHI(—[-1,1] x S,—{1} x S) = C.
Then the instanton contact element of (M,~,¢) is
O(M,~,&) :=Cs,0---0Cs5,(1) e SHI(—M, —7),
where Cj, is the contact gluing map associated to the contact 2-handle attachment along é;.

Theorem 4.10 (Baldwin and Sivek [BS16]). Suppose (M,~) is a balanced sutured manifold, and &
is a compatible contact structure. Then the instanton contact element 6(M,~,&) € SHI(—M,—)
is independent of the choice of the partial open book decomposition and is well-defined up to a unit.
In particular, the non-vanishing of the instanton contact element is an invariant property for the
contact structure.

Then we prove the main theorem of this subsection.

Proof of Theorem [[.Z3. First, we prove the instanton contact element is homogeneous with respect
to the Z-grading of SHI(—M,—~) associated to S. From [HKMO0Y, Theorem 1.1], any triple
(M,~,€) admits a contact cell decomposition. Hence there exists a Legendrian graph K, so that
(MN\intN (), €| amnintn (k) is contactomorphic to ([—1,1] x F, &) for some surface I with boundary
and the product contact structure . Let d1,..., §, be a set of meridians of K, one for each edge of
K. Then we can obtain the original £ on M from ([—1,1] x F,&y) by attaching contact 2-handles
along d1,...,0,. As discussed above, this gives rise to a contact handle decomposition and hence a
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partial open book decomposition. From Definition L9 we know that
9(M7"y,€) = C5n ©---0 051 (1) € @(7‘]\47 77)7

where Cj, is the contact gluing map associated to the contact 2-handle attachment along ¢;.
Suppose S < (M, ) is an admissible surface. We can isotope S so that it intersects K transversely
and disjoint from all §;. Write
Sk =S n (M\intN (K)).

We can consider it as a surface inside the product sutured manifold ([—1,1] x S, {1} x d5). Note
that 0Sx\0S are all meridians of K and, by construction, each meridian of & has two intersections
with the dividing set on d(M\intN(K)), which is also identified with

{1} x 0S < [-1,1] x {1} x S.
So Sk is also admissible inside ([—1,1] x S, {1} x 05). Since
SHI(—[-1,1] x S,—{1} x 0S) =~ C,
we know that there exists ig € Z so that
1eSHI(—[-1,1] x S,—{1} x 05, Sk, o).

From |LY21h, Proposition 4.6], we know that all maps Cjs, preserve the gradings associated to Sk
and S, respectively. Thus, we conclude that

9(M,%§) = C6n ©---0 061 (1) € @(_Mv _777;0)'

Then we need to figure out 7. Since SHI(—[—1,1] xS, —{1} x d5) is one-dimensional, the integer
1o is determined by its graded Euler characteristic (we fix the closure to resolve the ambiguity of
+H). By |[LY21H, Proposition 4.3 and Corollary 3.42] (see also [BS20b, Theorem 3.26]), it suffices
to calculate 79 when replacing SHI by SFH. Note that the contact element of any contact struc-
ture & compatible with (M, ~) lives in SFH(—M, —,s¢), where s¢ is the relative spin® structure
corresponding to £. The formula of iy then follows from [Hon00, Proposition 4.5]. O

4.3. Vanishing results about Giroux torsion.

Instanton contact elements share similar properties with the contact elements in SFH. To prove
the vanishing result about Giroux torsion for instanton contact element (Theorem [[25]), we need
to prove lemmas similar to Lemma and Lemma [£7

The analog of Lemma follows directly from the following proposition.

Proposition 4.11 (|Lil8b, Corollary 1.4], see also [BS16, Theorem 1.2]). Consider the notations
as above. If the contact structure & on M'\intM is a restriction of a contact structure & on M’,
then we have

®E(0(M77a€/|1\/f)) = Q(M/,’}/,f/) € @(7‘]\4/’ 77/)'

Corollary 4.12. Let (Y,&) be a closed contact 3-manifold and N 'Y be a compact submanifold
(without any closed components) with convex boundary and dividing set T'. If O(N,T,€&|n) = 0, then
0(Y,¢) =0.

The following proposition is the analog of Lemma [4.7]

Proposition 4.13. The instanton contact elements (N, [y, (") and (N, Ty, ;) vanish.
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Proof. Since instanton contact elements share most properties with contact elements, we can apply
the proof of Lemma .7 with mild changes. We sketch the proof and point out the main difference.
For simplicity, we only consider 6(Ny,x,(;"). The proof for (N, Ty, (; ) is almost identical.

Take a copy T. = T? x {¢} < intN, with dividing set consisting two curves of slope o0. Let L
be a Legendrian ruling curve on T, with slope —1 (c.f. Remark [L5). The Legendrian curve L has
twisting number —1 with respect to the framing coming from 7.. Let (N',I”,(¢;")") be obtained
from (N4, T, () by a contact (+1)-surgery along L. By [BS16, Theorem 4.6], the cobordism
map ® corresponding to the contact (+1)-surgery sending 6(Ny, Ty, () to O((N', TV, (7)) = 0.
By |GHVHMOS, Lemma 7], the resulting contact structure (¢;7)’ is overtwisted. Hence by [BS16,
Theorem 1.3], we have O((N',I”,(¢;")")) = 0. It remains to show ® is injective (at least on the
subspace generated by 6(Ny, [y, ().

Write (Ny, s, () for No. In the proof of Lemma7, by considering the relative spin® structure,
the authors of [GHVHMOS] showed that ¢(Ny, T'x, ¢f ) and ¢(Ny, Ty, ¢;) lie in the same F2 summand
of SFH(—Ny,—T4) = F3 (we replace Z-summand by Fy summand for the naturality issue, c.f.
Remark EE2)). The contact structure ¢ and the contact structure ({;) after the contact (+1)-
surgery along L can be embedded into S and S' x S? with standard tight contact structures,
respectively, which are both Stein fillable. Then both ¢(Ny,T'x, () and ¢(N’,T”, ((])’) are non-
vanishing. Thus, the map ® is injective on the Fo summand generated by ¢(Ny, Dy, ().

For sutured instanton homology, the analog of the (nontorsion) relative spin® decomposition is
the decomposition associated to admissible surfaces, constructed in [GL19, [Li19]. We can use two
annuli

Ag =S x{pt} x [,A; = {pt} x S' x = T? x I
to construct the decomposition, where the S* factors corresponding to curves of slopes oo and 0
parallel to the dividing sets, respectively. Since [0A4; "Tx| = 2 for i = 0, 1, by [LY20, Theorem 2.20]
there are only two nontrivial gradings for A;, corresponding to the sutured manifold decomposition
along A, and —A;. It is straightforward to check that sutured manifold decomposition along
+Ap U £ A; gives a 3-ball with a connected suture, whose SHI is 1-dimensional. Thus,

By Proposition [223] we know that 0(Ny, Ty, (") and 0(Ny, Ty, () live in the same grading.
Since SHI is 1-dimensional in any nontrivial grading, the elements 6(Ny, T'x, ¢;") and 0(Ny, Tx, ()
are linear dependent. By [BS16, Corollary 1.6] and the Stein fillablility, both 6(Ny, T, () and
O(N',T”,(¢;)) are non-vanishing. Then & is injective on the subspace generated by 6(Ny, T, (),
and ®(0(Ny, Ty, () = 0 implies O(Ny, Ty, () = 0.

O

Proof of Theorem [L.23 This follows from Lemma 4] Corollary E12] and Proposition £.13l Note
that Lemma [£.4] is only about contact topology, so we can apply it without change. 0

4.4. Vanishing results about cobordism maps.
Suppose (M,v) < (M’,~") is a proper inclusion of balanced sutured manifolds and suppose ¢ is
a contact strucutre compatible with (M'\intM,~" u (—v)). By Corollary [£12] if

O(M\intM,~" U (—7),€) = 0,

then the contact gluing map ®, vanishes on the subspace of SHI(—M, —v) generated by instanton
contact elements. Indeed, we can prove a stronger result by the functoriality of ®.. The proof of
the following proposition is due to lan Zemke.
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Proposition 4.14. Suppose (M,~) < (M’,~") is a proper inclusion of balanced sutured manifolds
and suppose & is a contact strucutre compatible with

(Mo, v0) == (M"\intM,~" U (=7)).
If the contact element 0(Mo,~0,§) vanishes, then the map ®¢ vanishes on SHI(—M, —v).
Proof. We have inclusions
(M, ) = (M,~) u (Mo, ) = (M',7"),
where L denotes the disjoint union. The manifold
M"\int(M U M)

is contactomorphic to dM x I. Let &y be the product contact structure on M x I. By the connected
sum formula [Lil8a, Section 1.8], we have

SHI(—M u (=Mop), =y u (=70)) = SHI(—M, —v) ® SHI(— Mo, —0) ® C*.
By functoriality, the map ® is the composition of the following maps
SHI(—M, —v) —»SHI(—M, —v) ® SHI(— My, —y) ® C* — SHI(—M', —")
T = z ® 0(Mo, v0,£) ® Yo = D¢, (2 ®0(Mo, 70, ),
where y is a canonical element in C2. If §(My,vo,£) = 0, then ®¢ = 0. O

Remark 4.15. For a general balanced sutured manifold (M, ), instanton contact elements do not
generate SHI(—M, —v) because the number of tight contact structures compatible with (M, ) is less
than dime SHI(M,v). See |Lil9, Section 4.3] and [Hon00] for discussion about contact structures
on the solid torus.

The following vanishing result is used in the rest of the paper.
Corollary 4.16. Suppose (M,~) < (M’,~") is a proper inclusion of balanced sutured manifolds. If
(M"\intM,~" U (=7),&) = (Na, T, i) 07 (Na, T, ¢1)
defined in Subsection[{_1], then ®¢ = 0.
Proof. This follows from Proposition and Proposition [£.14] O

5. INSTANTON L-SPACE KNOTS

In this section, we study the instanton knot homology of an instanton L-space knot K < Y. In
particular, we prove Theorem [[.9] Theorem [[. 1T, and Theorem [[LT7l For technical reasons, We
only deal with the case Hy (Y (K)) = Z.

5.1. The dimension in each grading.
In this subsection, we prove the following theorem. The main input is the large surgery formula
and the vanishing result Corollary 416l

Theorem 5.1. Suppose Y is an integral homology sphere with I*(Y) = C. Suppose K Y is a
knot and S is the Seifert surface of K. If there is a positive integer n so that Y_,,(K) is an instanton
L-space, then for any i € Z, we have

dim¢ KHI(-Y, K, S,4) < 1.
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Since Y is an integral homology sphere, K is always null-homologous and g = u,j\ = Ain
Subsection B2l By Definition B35 we have (¢, p) = (1,0) and (go,po) = (0,1). Then we have

Fu = FM = Wuarn =0, = YA—np-
Note that in the proof of Theorem B23, an auxiliary slope i/ = nji — A is used. Here we set
i’ = np — \. Since n is not fixed, this slope is also not fixed.

For simplicity, we write () for Yza+y,u in Definition Also, we omit S in the notation
SHI(-Y (K),~, S,1) for any .

Then we make the following definition.

Definition 5.2. For any integers n and ¢ with |i| < g(K), define

noly,

By = SHI(~Y(K), ~Tp,i—1+ [~ ; 1]).

Tn,i = @(7}/([()5 7Fn7i + |'

For i > ¢g(K) and any n, define T}, ; = 0. For i < —g(K) and any n, define B,,; = 0.

Remark 5.3. The notations ‘T’ and ‘B’ mean ‘top’ and ‘bottom’. If we use the notations after the
diagram (B.8)) and suppose g = g(K), then for any integers n and ¢ with |i| < g(K), we have

A~

Tpi=T5% and By, = %7,
By Lemma B.13] we have
Y i1t T = Tpiri and ¥y ny1: Boy —> Boyii
for n > 2g(K) + 1 and |i| < g(K).
The following proposition follows from the large surgery formula.

Proposition 5.4. Suppose Y is an integral homology sphere with I*(Y) = C. Suppose K < Y is
a knot. Suppose n is an integer so that n = 2g(K)+ 1 and Y_,,(K) is an instanton L-space. Then
we have the following.

Thi—ny1 m—g<is<n—1+g
ﬂ(_y(K)a—V(m—zn)ai)E C —n+g+1l<i<n—g-—1
Britn-1 —n+l—g<i<-n-+yg

Proof. The isomorphism of the top and bottom 2g gradings of SHI(—Y (K), —v(2,1-2n)) follows from
applying Lemma[B I3 to i’. Since Y_,,(K) is an instanton L-space, by (3], the manifold —Y_,,(K)
is also an instanton L-space. The isomorphism of the middle gradings follows from Proposition B.18]
Lemma [3.14] and Theorem O

Note that in the proof of Theorem (more precisely, in the tr1angle BI3)), we have a map
1/)&1 (i) from the space associated to I‘ to the space associated to Fn 1. We write this map
as ¥" ;. We also write »*", ! and ¢" 7, 2n-1 for 1 ,(i') and ¢° (') in BI5)), respectively.
Similarly we write ¢} ,,_4, i”n L and ¥" +72n_1 for maps in the positive bypass triangle. We abuse
notation so that bypass maps also denote their restrictions on a single grading. Then the following
proposition follows from the vanishing results established in Section (]
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Proposition 5.5. Suppose K < Y is a null homologous knot. For any integer n € Z with n >
2g(K) + 1 and any integer i with |i| < g(K), we have
o2 =0 Thyoi — Ty
and
Mol =0 Buta — Ba.
Proof. By Remark [5.3] it suffices to prove
Uy =2 oyt ol ot o™ = 0: Thyos — Thysa
and
= s oW s oWl Ly oW o R =0t Boyai — Buasi
By classification of tight contact structures on 72 x I [Hon00], we know that the contact structures

corresponding to Wy and ¥ are contactomorphic to either (N, [y, ;") or (Ny, Ty, () defined in
Subsection .1l Then the lemma follows from Corollary [£.16] O

Proposition 5.6. Suppose Y is an integral homology sphere with I*(Y) = C. Suppose K Y is
a knot. Suppose ng be a positive integer so that Y_,,,(K) is an instanton L-space. Then for any
integer n so that n > ng, Y_,(K) is also an instanton L-space.

Proof. This proposition follows immediately from y(I*(Y_,(K)) = |H1(Y_,(K))|, the equation

[Hy (Yop—1(K))| = [Hy (Y_n(K))| + [H1(Y)],

and the following surgery exact triangle ([BS18b, Section 4.2], see also |Scal3])

BV 1(K)) (Y., (K))
(Y)

O

By Proposition [5.4] and Proposition [5.5] the proof of Theorem [B.1] follows from similar algebraic
lemmas in [OS05H, Section 3]. We reprove them in our setting.

Lemma 5.7. Suppose Y is an integral homology sphere with I*(Y) = C. Suppose K < Y is a knot.
Suppose ng be a positive integer so that Y_,, (K) is an instanton L-space. Suppose further that for
a large enough integer n and some integer m with |m| < g(K), we have T, 41 = 0. Then one of
the following two cases happens.

(1) KHI(-Y, K,m) = C and By m—1 =0,

(2) KHI(-Y,K,m) =0 and T,, y, = 0.

Proof. By Proposition (.6l we can take an arbitrary large enough integer n, since they are all
L-space surgery slopes. From Proposition [3.10, we have the following exact triangle

Tn 1,m+1

‘\KHI /

Y, K,m)
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From Remark and the assumption T}, ;41 = 0, we know that
Th—1,m+1 = Tnm+1 = 0and By m—1 = By—1,m—1-
Hence there exists some k € N so that
Tpm = KHI(-Y, K, m) = CF.
Also from Proposition B.I0, we have the following exact diagram

@(_Y(K)v —Y(2,1-2n)>» m)

|

Tn,m

wn,m
—n—1
2n—3,m—1 n—1,m-—1

Tl
anl,mfl — Tn72,m

@(7}/([()7 —7(2,3—2n), M — 1)

where 1/)7_“)’:;_1 is the map 9", _, restricted to the graded part 7}, », and other notations are defined
similarly. Since |m| < g(K), Proposition 54 implies that

SHI(—Y (K), —Y(2,1—2n), m) = SHI(=Y (K), —y(2,3—2n),m — 1) = C.

Hence the above diagram can be re-write as

(5.1) C
Ty = CF
Lw" -
P! LNl
(C - anl m—1 > Tn72,m = Ck

We consider the following two cases.
Case 1. 77[]_2:;_371m—1 is trivial. Then from the exactness of the horizontal sequence in (G1), we
know that B,,_1 ;-1 = C*1 and z/;ijnlfgfl is injective. Also, we conclude from the exactness of

the vertical sequence in () that 4" | is surjective. However, from Proposition we know
that

n—1,m—1 n,m _
¢+,n—2 Ow—,n—l = 0.

Hence the only possibility is that & = 1, and this concludes that T, ,, =~ KHI(-Y, K,m) = C, and
Bn.m—1 = Bp_1,m—1 = 0, which is the first case in the statement of the lemma.

Case 2. 77[]_2:;_371m—1 is nontrivial. Then from the exactness of the horizontal sequence in (5.1,

“1m—1 . C . .
we know that B, 1 m-1 = CF1 and Y57 is surjective. From the above discussion and the
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bypass exact triangle from Proposition B.10, we have another exact diagram

(5.2) SHI(—Y (K), —¥(2,5-2n),m) = C
wnflj'gfl l
By_1 1 = Ck! o Th_om = CF
lw”,f”?;‘
Bn—3,m—1 = (Ck+l

n—2,m
—,n—3

The exactness of the vertical sequence in (5.2 implies that the map 1)
from Proposition 5.5 we have

is injective. However,

WU el =0,
Hence the only possibility is that k = 0. Thus, we conclude that T}, ,,, = KHI(—Y, K, m) = 0, which
is the second case in in the statement of the lemma. ]

Lemma 5.8. Suppose Y is an integral homology sphere with I*(Y) = C. Suppose K < Y is a knot.
Suppose ng be a positive integer so that Y_,, (K) is an instanton L-space. Suppose further that for
a large enough integer n and some integer m with |m| < g(K), we have By, = 0. then one of the
following two cases happens.

(1) KHI(-Y,K,m) = C and T, ,, =0,

(2) KHI(-Y, K,m) =0 and By m—1 = 0.

Proof. The proof is similar to that of Lemma 5.7} From Proposition 310, we have the following
triangle
anl,mfl Bn,m

T~

HI(-Y, K, m)

Hence there exists some k € N so that
Bn_1.m-1 = KHI(-Y, K,m) = C".

Also from Proposition [3.10, we have the following exact diagram

(5.3) C
Thm C
oz |
Wi Vi
C Bn—l,m—l = (Ck Tn—2,m
lwn2,ml
—,n—3
an&mfl = Ck

We consider the following two cases.
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Case 1. 1/1_2:;_3’1"1_1 is trivial. Then from the exactness of the horizontal sequence in (5.3]), we

— —1 -1 . . .
know that T2 m = CF~1 and ¢} ") is surjective. Also, we conclude from the exactness of the
n—2,m
—,n—3

YL o vy = 0.
Hence the only possibility is that £ = 1. Hence we conclude that KHI(—Y, K,m) = C and T}, », =

T, —2,m = 0, which is the first case in the statement of the lemma.
Case 2. 1/1_2:;_3’1"1_1 is nontrivial. Then from the exactness of the horizontal sequence in (5.3), we

second vertical sequence in (5.3) that ¢
that

is injective. However, from Proposition 5.5 we know

—1 -1 . . . .
know that T}, ,,, = Tp,—2.m = CF*1 and 7,/1:";"21 is injective. Also, we conclude from the exactness

of the first vertical sequence that wf’)’s_l is surjective. However, from Proposition 5.5 we know that
—1,m—1 ,
dji,nfng o wﬁfr?fl = 0.
Hence the only possibility is that £ = 0, and this concludes that
Bpm-1 = Bn_1m-1 = KHI(-Y, K,m) = C",
which is the second case in the statement of the lemma. g

Proof of Theorem[5.1l By Definition and Lemma 3.8, we know that

T, g()41 = 0 and KHI(—Y, K, g(K) + 1) = 0.
We apply an induction that decreases the integer i: assuming that for ¢ + 1, we have

KHI(-Y,K,i+1)=C or0
and either T, ;11 = 0 or By, (j+1)-1 = 0, then we want to prove the same results for i. When
Ty.i+1 = 0, from Lemmal[5.7] we have either KHI(-Y, K,i) = C and B,, ;-1 = 0 or KHI(-Y, K,%) =
0 and T5,; = 0. When B, (;41)-1 = 0, from Lemma 5.8, we have either KHI(-Y, K,i) =~ C and
T,: =0 or KHI(-Y,K,i) = 0 and B, ;-1 = 0. Hence, the inductive step is completed and we
conclude that
KHI(-Y, K,i) = C or 0.
for all i € Z so that |i| < g(K). From Lemma [B.8 we know that
KHI(-Y,K,i) ~0

for all i € Z with |i| > g(K). Hence we conclude the proof of Theorem 511 O

5.2. Coherent chains.
In this subsection, we prove instanton analog of [RR17, Lemma 3.2] with more assumptions.
First, we introduce the analog of [RR17, Definition 3.1] in instanton theory.

Definition 5.9. Suppose K is a knot in a rational homology sphere Y and suppose [ is the
meridian of K. Suppose the knot complement Y (K) satisfying H; (Y (K)) = Z so that we can
identify [ii] € H1(Y(K)) as an integer ¢. Indeed, if a Seifert surface S of K is chosen, we can set
g =S - fi. For any integer s and its image [s] € Z,, define

KHI(-Y, K, [s]) := D KHI(-Y, K, S, s + kq).
keZ
It is called a positive chain if it is generated by elements

LTlsee s T YLy -5 Y1-1,
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each of which lives in a single grading associated to S and a single Zs-grading, and the differentials
dy and d_ satisfy

d_(y;) = ®it1,dy (y;) = 25, and d_(x;) = dy(x;) = 0 for all 4,
where = means equal up to multiplication by a unit. The space KHI(—Y, K, [s]) is called a negative
chain if there exist similar generators so that

d_(z;) = yi, dy(x;) = yi—1, and d_(y;) = d4(y;) = 0 for all i.

We call KHI(-Y, K) consists of positive chains if KHI(-Y, K, [s]) is a positive chain for any
[s] € Z, and consists of negative chains if KHI(-Y, K, [s]) is a negative chain for any [s] € Z,.
We call KHI(—Y, K) consists of coherent chains if KHI(—Y, K) either consists of postive chains
or consists of negative chains

Remark 5.10. By Definition (9] the space KHI(-Y, K, [s]) is both a positive chain and a nega-
tive chain if and only if dim¢ KHI(-Y, K, [s]) = 1. By the proof of Proposition B.33] the space
KHI(-Y, K) consists of positive chains if and only if KHI(Y, K) consists of negative chains.

The main theorem in this subsection is the following.

Theorem 5.11. Suppose K < Y is a knot as in Definition[5.9 Note that H1 (Y (K)) = Z. Suppose

Y is an instanton L-space and suppose n € N. Suppose the basis (i, \) of 0Y (K) is from Definition
[FA If Y_,.(K) is an instanton L-space, then KHI(—=Y, K) consists of positive chains. If Y, (K) is
an instanton L-space, then KHI(—Y, K) consists of negative chains.

For simplicity, we only provide details of the proof for a special case of Theorem [5.11l The proof
for the general case is similar. The main input is Theorem .11

Definition 5.12. We adapt notations in Subsection [5.]] and Construction .21l For any integer s,
suppose B;S is the subcomplex of B with the underlying space

@ SHI(-Y(K), T, S, s + kq)

k>s

and suppose BZ, is the subcomplex of B, with the underlying space

@ @(7}/([()7 71—\1#7 Sv s+ kQ)

k<s

Let H(BZ,) and H(BZ,) be the corresponding homologies.
Lemma 5.13. For any integers n and i with |i| < g(K), we have
T,;~ H(BL,) and B, = H(BZ,).
Proof. This follows from Remark 53] equations (8:9) and B.I0), and Theorem [Z41 O

Theorem 5.14. Suppose K is a knot in an integral homology sphere Y with dimc I*(Y) = 1. If
there is a positive integer n so that Y_,, (K) is an instanton L-space, then KHI(—Y, K) consists of
positive chains in the sense of Definition [5.9

Proof. By Theorem [5.]], for any integer i, we have
dim¢e KHI(-Y, K, i) < 1.

Then we have integers
ny >Mng > -+ >nNg
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so that
1 ifi=n;for je[0,k];

dime KHI(-Y, K,i) =
0 else.

Suppose x; is the generator of KHI(—Y, K, ns;—1) and y; is the generator of KHI(—Y, K, ns;). We
verify that those z; and y; satisfy the positive chain condition, ¢.e. for any integer ¢, we have

(5.4) d—(yi) = wiy1,d4(yi) = i, and d_(z;) = dy (z;) = 0,

where = means the equation holds up to multiplication by a unit. We prove this condition by
induction. We only consider the condition about the differential d;. The proof for d_ is similar.
The gradings in the following arguments mean the gradings associated to the Seifert surface S. Note
that by the proof of Theorem B.1] we have

Thme = Bnng_,+1 = 0 for any .
Hence by Lemma [5.13] we have
Th: = H(B;m) =H(B_,_,)
First, suppose ¢ = 1. Since z; lives in the top grading of KHI(-Y, K) and d; increases the

Z-grading, we must have d (z1) = 0. Since H(B;m) = 0 and there are only two generators x; and
+

y1 in B, , we must have d  (y1) = x1.
Then we assume the condition ([G.4]) holds for ¢ <1 — 1 and prove it also holds for ¢ = [. Since

H(B;nzl) = H(B;nzlfz) = O’
we know the quotient complex B;nm / B;LHZF2 also has trivial homology. Since it is generated by x;
and y;, the coefficient of d (y;) about x; must be nontrivial. Hence y; is not in the (ng;—1 —mng; + 1)-
page of the spectral squence associated to d. Since other generators x1,...,z;—1,91,-.-,Yyi—1 have

smaller gradings than z;, we know by construction of d; in Construction 2.6l that the coefficients of
d4 (y1) about those generators are zeros. Hence d (y;) = x;. Since dy ody = 0, we have d; () = 0.

Thus, we prove the condition holds for i = [.
O

Proof of Theorem[511l If Y_,(K) is an instanton L-space, then the proof is similar to that of
Theorem 5.4l To prove a generalization of Theorem [5.1] we need to remove the integral homology
sphere assumption in Proposition .18 and Proposition The corresponding proofs follow from
Remark[B 9 and the proof of [BGW13, Proposition 4]. If Y;,(K) is an instanton L-space, by Remark
IO we can consider the mirror knot to obtain the result. O

5.3. A graded version of Kiinneth formula.
In this subsection, we prove the following graded version of Kiinneth formula for the connected
sum of two knots.

Proposition 5.15. Suppose Y1 and Yz are two irreducible rational homology spheres and K1 < Y,
Ky c Yy are two knots so that Y1(K1) and Yo(K2) are both irreducible. Suppose

(Y, K') = (M1tYa, K11K>)

is the connected sum of two knots. Then there is a minimal genus Seifert surface S of K' with the
following properties.

(1) There is a 2-sphere ¥ < Y’ intersecting the knot K' in two points and intersecting S in arcs.
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(2) If we cut S along S N2, then S decomposes into two surfaces Sy < Y1 and Sz < Ya so that S;
is a union of some copies of Seifert surfaces of K; fori=1,2.
(8) There is an isomorphism
(5.5) KHI(Y',K',5,k) = (D KHI(Y1, K1, 51,7) ® KHI(Ys, Ko, S2, 7).
i+j=k
Proof. Let S be a minimal genus Seifert surface of K’ and let ¥ < Y’ be a 2-sphere so that 2
intersects K’ in two points. We can choose ¥ so that

Y Y (K') = p1 U s,
where p17 and po are two meridians of K’. Write
A=Y nY'(K').

From now on, we also regard S as a surface inside the knot complement Y’ (K"). We can isotope S
so that S intersects A transversely and S has minimal intersections with both u; and us. Now we
argue that we can further isotope S so that S intersects A in arcs. Suppose

SNnA=a1U---Ua,UBiu--uUBm,

where o; are arcs and ; are closed curves. Observe that each component of A\(a; U -+ U a,) is a
disk. Then using the arguments in the proof of [Rol90, Chapter 5, Theorem A14], we could further
assume that m = 0, i.e., S intersects A in arcs. When we cut the knot complement Y'(K’) along
A, we obtain the disjoint union of the knot complements Y;(K7) and Y2(K3), and the surface S
decomposes into S; < Y1(K7) and Sy < Y2. Note that S; and Sp must be the union of (possibly
more than one) copies of Seifert surfaces of the corresponding knots. Then we prove the isomorphism
3.

First, we prove
(5.6) KHI(Y', K) = KHI(Y;, K1) ® KHI(Y;, o).
To do so, we pick a meridian p of K; for ¢ = 1,2 pick suitable orientations so that (Y'(K”), uj v )
is a balanced sutured manifold. Then we can decompose it along the annulus A:
(Y'(K'), 1y © ) ~ (Yi(Er), pa v py) u (Ya(K2), po U ).

From [KM10b, Proposition 6.7], this annular decomposition leads to the isomorphism (G.6). To
study the grading behavior of this isomorphism, we sketch the construction of the isomorphism as
follows. Pick a connected oriented compact surface T' so that

0T = —p1 U —ps.
Pick an annulus T so that
OT" = —py U —pa.
One could think of T” be a copy of the annulus A.
In [KM10Db, Section 7], Kronheimer and Mrowka constructed closures of

(Y1(K1), a0 py) b (Ya(K2), p2 0 i)

as follows. First, glue [—1,1] x (T uT") to Y1 (K1) u Y2(K32) using the boundary identifications as
above to obtain a pre-closure

~

(5.7) M = (V1(Ey) uYa(K)) v [=L1] < (T v T').
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The boundary of M has two components
oM =R. UR_,
where
Ry = Ry v ph) U Re(p2 v ) u {£1} x (T v T).
Second, choose an orientation preserving diffeomorphism

I’LZRJr"Rf

and use h to close up M and obtain a closed 3-manifold Y with a distinguishing surface R. The
pair (Y, R) is a closure of (Y1 (K1), 1 v py) u (Ya(K2), p2 U ph).

Remark 5.16. In [KM10b, Section 7], we also need to choose a simple closed curve in Y, either
transversely intersecting R at one point or is non-separating on R, to achieve the irreducibility
condition for related instanton moduli spaces. In the current proof, the choices of simple closed
curves are straightforward, so we omit them from the discussion.

Note that gluing [—1,1] x Ty to (Y1 (K1), pu1 v pf) u (Ya(K2), p2 U wh) is the inverse operation
of decomposing (Y'(K'), i} U ph) along the annulus A. As a result, (Y, R) is clearly a closure of
(Y'(K'), uy v ph) as well. The identification of the closures induces the isomorphism in (5.6]). More
precisely, we can pick the surface T" with large enough genus and pick a simple closed curve § = T
so that 6 separates T into two parts, both of large enough genus, and with —u} and —pf, sitting in
different parts. We also pick a core 6’ of the annulus 77. When choosing the gluing diffeomorphism
h: Ry — R_, we can choose one so that

(5.8) h({1} x 0) = {1} x 0, and h({1} x @) = {1} x ¢.

Hence, inside Y, there are two tori S* x @ and S* x #'. If we cut Y open along these two tori
and reglue, then we obtain two connected 3-manifolds (Y7, R;) and (Ya, R2), which are closures of
(Y1 (K1), p1 v ) and (Ya(K2), o U ph), respectively. The Floer’s excision theorem in [KM10b,
Section 7.3] then provide the desired isomorphism.

To study the gradings, recall that

SNA=a1U - Ua,

where «a; are arcs connecting p1 to ps on A. We can also regard those arcs as on the annulus 7".

Assume that ¢S intersects each of uf and pf, in n points as well. Note that we have assumed that

T has a large enough genus. Then there are arcs d1,..., d,, so that the following holds. Recall we

have chosen 6 — T in previous above discussions.

(1) We have 0(01 U -+- U dp) =S N (p) U ph).

(2) Fori=1,..,n, the arc ¢; intersects 6, transversely once.

(3) The surface S\(d1 U --- U, U 01) also has two components.

(4) Let § = SU[~1,1] x (1 U --- U ay) be a properly embedded surface inside the pre-closure M
as in (B7), then we can choose a gluing diffeomorphism & : Ry — R_ satisfying the condition
(E8) and the following extra condition

h(oS A Ry)=0S A R_.

Hence, the surface S extends to a closed surface S < Y that induces the desired Z-grading on
KHI(Y’, K'). When we cut Y open along S' x § and S' x ¢’ and reglue, the surface S is also cut
and reglued to form two closed surfaces S; < Y; and Se < Y;. They are the extensions of the Seifert
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surface S1 of K7 and the Seifert surface Sy of K5 in the corresponding closures. Hence the Floer’s
excision theorem in [KM10b, Section 7.3] provides desired the isomorphism (G3]). O

5.4. Proofs of theorems in the introduction.
In this subsection, we prove Theorem [[L9 Theorem [[.TT and Theorem [[.17]

Proof of Theorem[1.d By Remark [[L8 we may assume S2(K) is an instanton L-space for some
n € N;. Then by Theorem [E.IT] the space KHI(S3, K) consists of coherent chains. Then arguments
about KHI(S% K, S, i) follow from Definition and Proposition B.37

To prove K is a prime knot, we can apply the proof of [BVV1&, Corollary 1.4] to K HI, replacing
[BVV18&, Theorem 1.1] by [BS18a, Theorem 1.7]. Note that we need the graded version of Kiinneth
formula for K HI in Proposition O

Proof of Theorem[I.177 By ([[.3)), a knot K < Y is instanton Floer simple if and only if the mirror
knot (—Y, K) is instanton Floer simple. Note that by spectral sequences in Theorem 320, we always
have
dime KHI(-Y, K, [s]) = dime I*(—Y, [s]) = 1.

By Remark[E.10, we know that (=Y, K) is instanton Floer simple if and only if the space KHI(-Y, K)
both consists of positive chains and consists of negative chains.

By Theorem and Theorem [3.32] if K is instanton Floer simple, then for any large integer
n, the manifolds Y,,(K) and Y_, (K) are both instanton L-spaces. By the similar argument in the
proof of [BGW13, Proposition 4], the manifold Y,.(K) is an instanton L-space for any |r| = n.

Conversely, if for any r with |r| sufficiently large, the manifold Y,.(K) is an instanton L-space,
then for any large integer n, the manifolds Y, (K) and Y_,,(K) are both instanton L-spaces. By
Proposition BTl the space KHI(—Y, K) both consists of positive chains and consists of negative
chains. Hence K is an instanton Floer simple knot. g

Finally, we prove Theorem [[L.TIl Suppose K < Y is a knot with H; (Y (K)) =~ Z and suppose [
is the meridian of K with ¢ =e= S [i, where S is the Seifert surface of K. We choose a basis (fi, 5\)
of H1(0Y (K)) as in Definition Bl and identify the slope with rational numbers. Then we have the
following lemma.

Lemma 5.17 (JRR17, Lemma 2.7]). Consider the setting as above. If r = u/v, the manifold
Y (K) is obtained from Y' = YH#L(v, —u) by some integral surgery on K' = K§K (v, —u, 1), where
K(v,—u,1) is the unique knot in L(v,—u) so that the complement is diffeomorphic to S* x D?.
Moreover, we have

Hy(Y'(K")) = Hi(Y/(K)) = Hi(S" x D?)/(f1, 1),
where p' is the meridian of K (v, —u,1). Hence H (Y'(K')) = Z if and only if ged(q,v) = 1.

Proof of Theorem [[. 11l By |RR17, Lemma 3.2], for a Heegaard Floer L-space knot K < Y, the
space HFK (Y, K) satisfies similar coherent chain condition as in Definition Consider the Z-
grading on HFK (Y, K) induced by pairing the first Chern class of the spin® structure with S. Since
H,(Y(K)) =~ Z, the Z-grading encodes all information in the spin® decomposition and the coherent
chain condition implies
dimp, HFK (Y, K, S,i) < 1.

Hence the dimension is determined by the graded Euler characteristic.

If v = 1 and r € Z, then by similar discussion as above, Theorem [E.ITlimplies that KHI(Y, K, S, 1)
is determined by the graded Euler characteristic. Hence the theorem follows from (LA]).
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If v # 1, then by Lemma 517, we can apply the proof for v = 1 to
(Y, K') = (Y§L(v, —u), KK (v, —u, 1)).
Note that simple knots are instanton Floer simple knots by [LY20, Proposition 1.7]. Then the

theorem follows from the graded Kiinneth formula for KHI (Proposition EI5) and HFEK ([OS11,
Section 5]). We do not need to consider the irreducible condition due to the convention in Subsection

B2 O
6. DEHN SURGERIES ALONG GENUS-ONE KNOTS

In this section, we study the framed instanton Floer homology of Dehn surgeries along knots
that satisfies the following conditions:
(1) The genus of the knot is 1, i.e., g(K) = 1.
(2) The instanton knot homology of the knot is determined by the Alexander polynomial, i.e.,

Ak (t) = ait + ap + a_1 and dime KHI(S?, K, i) = |a;| for i € Z.
Such knots include all genus-one Khovanov-thin knots (in particular, genus-one quasi-alternating
knots [KM11, Corollary 1.6]). In Table [l we list all genus-one alternating knots with crossings
< 12 (they are also all known examples of genus-one quasi-alternating knots). The data are from
KnotInfo [LM21]. Note that we normalize the Alexander polynomial by (II). The first knot
for each crossing number in the table is a twisted knot. The reader can compare this table with
examples in [BS20a].

TABLE 1. genus-one alternating knots with crossings < 12

No. | Name | 4-ball genus | Signature | Two-bridge notation | Alexander polynomial
1 31 1 -2 3/1 t—14t1
2 49 1 0 5/2 —t+3—t1
3 52 1 -2 7/3 2t — 3+ 2t7!
4 61 0 0 9/7 —2t+5—2t7!
5 72 1 -2 11/5 3t—5+3t7!
6 74 1 -2 15/11 4t — 7+ 47t
7 81 1 0 13/11 —3t+7-3t71
8 83 1 0 17/4 —At +9 — 4t~
9 99 1 -2 15/7 4t — 7+ 471
10 95 1 -2 23/17 6t — 11+ 671
11 935 1 -2 Tt— 13+ 7t
12 104 1 0 17/15 —4t+9 — 471
13 103 0 0 25/6 —6t + 13 — 671
14 | 1lagsy 1 -2 19/17 5t — 9+ 5t7!
15 | 1lasgs 1 -2 31/27 8t — 15+ 871
16 | 1lasee 1 -2 10t — 19 + 1071
17 | 1lases 1 -2 35/29 9t — 17+ 9t 1
18 | 12agps 1 0 21/2 —5t +11 —5¢t7!
19 12@1166 1 0 33/4 —8t+ 17— 8t_1
20 | 12a1987 1 0 37/6 —9t +19 —9t1

From conditions in (L.IJ), there are two possibilities of the Alexander polynomial:



SU(2) REPRESENTATIONS AND A LARGE SURGERY FORMULA 47

(i) Ag(t) =at— (2a—1)+ at~! for some a € N;

(ii) Ag(t) = —at+ (2a+ 1) — at~! for some a € N;.

We treat these two cases separately in the following two subsections.

Convention. For simplicity, we write KHI(K) for KHI(—S3, K) and KHI(K, i) for KHI(—S3, K, S, 1),
where S is a Seifert surface of K. Recall that we write K for the mirror knot of K. We will write
H(C) for the homology of a complex C' and write f, for the induced map between homologies.

Recall the results from Section In this case, we have A, = (KHI(K), ds) for any s, and

dy () gr(z) > s,
ds(z) = { dy(x) +d_(z) gr(z) =s
d_(x) gr(z) < s.

where gr(z) is the grading of « € KHI(K) associated to the Seifert surface. We can further decom-
pose the differentials as follows:
di =) dyandd_ =) di, where d} : KHI(K,i) — KHI(K, ).
1<j 1>7

Since g(K) = 1, the —3-surgery is a large surgery in the sense of Theorem [[.22 Hence we have

1
IH(=S%45(K)) = @ H(As,dy),

s=—1
where
H(Ai,dy) = HEKHI(K),d_) = I*(-S%) = C,
and
H(A_y,d_y) = HKHI(K),d,) = I*(-5%) = C.
Hence we know that
(6.1) dime I*(—S5%5(K)) = 2 + dim¢ H (Ao, do).

Since a; = a_1, by the graded Euler characteristic of K HI [Lim09, [KM10a], we know that that
the parities of KHI(K, 1) and KHI(K, —1) are the same under the Zs grading. By Proposition B.31]
we know that there is no d'; or d;* differentials. Hence, we know that

do =dj +d°;.
6.1. The case of (2a + 1).
In this case we know that
Ce 1= +1,
KHI(K,i) ~ { C?**+1 =0,
0 else.

We have the following.

Lemma 6.1. The differential

dy - KHI(K, 1) — KHI(K, 0)
is injective and the differential
d°, : KHI(K,0) — KHI(K, —1)

18 surjective.
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Proof. Since
dime Ker(d® ;) > dim¢ KHI(K, 0) — dime KHI(K, —1) = a + 1
and
dim¢ Im(d}) < dime KHI(K, 1) = a,
we know
1 < dimg(Ker(d® ,)/Im(dg)) < dime H(Ay,dy) = 1.
We conclude that
dimc Ker(d° ;) = a +1

which means that d° , is surjective. Also, we must have
dimc Im(d}) = a + 1
which means that d} is injective. O
Lemma 6.2. We have Ker(dj) = Ker(d" ;) =~ Co*+1.
Proof. Applying the argument in Lemmal[G.1to the bent complex (A_1,d_1), we also conclude that
dim¢ Ker(d” ;) = a + 1.
Hence Ker(dy) =~ Ker(d® ). Then we show they are indeed the same space. Suppose
x € Ker(d”,) so that x ¢ Ker(d)).

Then we know that
dh o df(z) # 0.
Since = € Ker(d” ;) and Im(d}) < Ker(d” ), the map

0 0
(d} o d%), : H(KHI(K,0) =5 KHI(K, —1)) — H(KHI(K,0) =% KHI(K, —1))

is non-trivial. By Lemma [5.I3] we can identify the map (df o d9), between bent complexes with
the composition of bypass maps

Loyt 0 Byyn — B
By Proposition 5.5 this map is zero, which is a contradiction. Hence, we conclude that
Ker(d®,) < Ker(d?).
Since they have the same dimension, they must be the same vector space. g
Proposition 6.3. Suppose K is a genus-one knot so that
Ak(t) =at+ (2a + 1) + at™! for a e N; and dimc KHI(K) = 4a + 1.
Then for any u,v € Z with u # 0,v > 0 and ged(u,v) = 1, we have
dime I*(53, (K)) = 2av + [u.
Proof. Applying Lemma to K, we have
dim¢ H(Ap, do) = 2a + 1.
By (61)), we conclude that
dime I* (=52 5(K)) = 2 + dim¢ H(Ao, do) = 2a + 3.
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The same argument applies to the mirror K of K, so we know that

dime I*(—=S3(K)) = dime I#(—S3;(K)) = 2a + 3.
Then the proposition follows from [BS20a, Theorem 1.1]. O
Remark 6.4. Under the terminologies in [BS20a], we know that ro(K) = 2a and v#(K) = 0 under
the assumption of Proposition However, we do not know if K is V-shaped or W-shaped in the

sense of [BS20a, Definition 3.6]. If K is slice, then [BS20a, Theorem 3.7] implies it is W-shaped. If
we knew the shape, then [BS20a, Theorem 1.1] would also tell us dime I*(S3(K)).

6.2. The case of (2a —1).
In this case we know that

Ce i=+1,
KHI(K,:) ~ < C?*1 =0,
0 else

Since
Ker(dy) ¢ H(Ay,dy) = C
hence we must have
dim¢ Ker(d}) < 1.
Hence we have the following two subcases.
(1) dimg Ker(d}) = 0.
(2) dimg Ker(d}) = 1.

Lemma 6.5. We have Ker(d}) = Ker(d® ;) =~ C* in Case (1).

Proof. The condition dim¢ Ker(d}) = 0 implies d}, is injective and dim¢ Im(d}) = a. Since Im(d})
Ker(d® ), we know that dim¢ Ker(d” ;) > a and hence dimc Im(d® ;) < a — 1. Since

KHI(K, —1)/(Im(d°,)) € H(A;,d;y) =C,

we must have dim¢ Ker(d” ;) = a.
Since d} is injective, by the proof of Lemma [6.2] we know that Ker(d?;) < Ker(d?). Hence we
know that dim¢ Ker(d” ;) = a and hence dim¢ Im(d” ;) < a — 1. Since

KHI(K, 1)/(Im(d?)) © H(A_1,d_1) ~ C,
we must have dim¢ Ker(d}) = a = dim¢ Ker(d” ;) and hence Ker(d9) = Ker(d” ;). O

To distinguish the bent complexes of K and its mirror K, we write A,(K) and A, (K), respectively.
We write d} for the component of differentials in A, (K).

Lemma 6.6. We have Ker(d}) = Ker(d° ) = C*~! in Case (2).
Proof. Note that Ker(d}) = H(A1,d;) = C. This means that
Ker(d ;) = Im(d}) and Im(d°,) = KHI(K, —1).

Consider the bent complex of the mirror knot. By Proposition [3.33] and Corollary [3.35, we have
a duality between d; and d’. In particular, we have

Ker(dy ') = Coker(d’ ;) = 0.
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So we can apply Lemma to A4(K) and conclude that Ker(d}) = Ker(d",). Using the duality
again, we have Im(d}) = Im(dy ') = C~'. Hence Ker(dy ') = C. Since
Ker(dal) c H(Afl, dfl),

we conclude that
Ker(d”,) = Im(d}) = Im(dy ') = Ker(d)).

The following corollary is straightforward from the above discussion.

Corollary 6.7. For a knot K < S®, its bent complex A(K) falls into Case (1) if and only if
As(K) falls into Case (1).

Proposition 6.8. Suppose K is a genus-one knot so that
Ag(t)=at+ (2a —1) +at™" for ae N, and dimec KHI(K) = 4a — 1.

Then for any u,v € Z with u # 0,v > 0 and ged(u,v) = 1, one and exactly one of the following two
cases happens.

(a) dim@ﬂ(Si/v(K)) =(2a —1)v + |u—v|.
(b) dime I#(S3, (K)) = (2a — 1)v + |u + v].

ufv
Proof. When A,(K) falls into Case (1), then from Lemma [6.5 we know that
dime H(Ao, do) = 2a + 1.
Hence by (6.1)), we conclude that
dime I* (=52 5(K)) = 2 + dim¢ H(Ao, do) = 2a + 3.

Furthermore, by Corollary 6.7 we know that A,(K) falls into Case (1). By Lemma [6.6, it follows
that

dime I*(—=S3(K)) = dimc I#(—S3;(K)) = 2a + 1.
Then from [BS204, Theorem 1.1] we know that Case (a) holds. When A, (K) of K falls into Case
(1), by similar proof, we know that Case (b) holds. O

Remark 6.9. Note that K satisfies Case (a) in Proposition 6.8 if and only if K satisfies Case
(b) in Proposition The hypothesis of Proposition only involves the genus, the Alexander
polynomial, and the total dimension of the instanton knot homology of the knot, which are all
impossible to distinguish K from its mirror.

Remark 6.10. The two cases of Proposition [6.3] correspond to the two cases where v#(K) = 1 and
V#(K) = —1, respectively. For genus-one alternating knots, from [BS20a, Corollary 1.10] we know
that

1
Tﬁ(K) = —§U(K), |0(K)| < 2,
218 (K) — 1 < v (K) < 27%(K) + 1,
and hence
~1</HK)<1.
If we suppose futher that the Alexander polynomial is of the form

Ag(t)=at+ (2a —1) +a*,
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then we have o(K) # 0 and hence 7%(K) = v#(K) = —¢(K)/2. Thus, for genus-one alternating
knots, which case of Proposition [6.8 happens depends on the signature of K.

Proof of Theorem[I.20. The result in instanton theory is a combination of Proposition[6.3] Proposi-
tion[6.8] Remark [6.4] and Remark[6.I0l The result in Heegaard Floer theory is follows from |[Han20,
Proposition 15]. O

7. EXAMPLES OF SU(2)-ABUNDANT KNOTS

In this subsection, we provide many examples of SU(2)-abundant knots.

Proposition 7.1. Instanton L-space knots in S° are classified in the following cases

(1) An alternating knot is an instanton L-space knot if and only if it is the torus knots T'(2,2n+1).

(2) A Montesinos knots (in particular, a pretzel knot) is an instanton L-space knot if and only if it
is the torus knot T'(2,2n + 1), the pretzel knot P(—2,3,2n + 1) for n € Ni, and their mirrors.

(3) Knots that are closures of 3-braids are not instanton L-space knots except the twisted torus
knots K (3,q;2,p) with pg > 0 and their mirrors.

Proof. Note that torus knots admit lens spaces surgeries [Mos71] and pretzel knots P(—2,3,2n+ 1)
admit Seifert fibred L-space surgeries [LM16]. Hence they are instanton L-space knots.

Theorem [[.3] provides many necessary conditions of instanton L-space knots. By |[OS05H, Propo-
sition 4.1], if an alternating knot satisfies term (1) in Theorem [[13] then it is the T'(2,2n + 1) torus
knot. Hence hyperbolic alternating knots are not instanton L-space knots.

In [BM1g], there is a classification of (Heegaard Floer) L-space knots for Montesinos knots.
From [BM18, Section 3.1], the proof of this classification only depends on term (1) in Theorem [[.3]
the inequality (.2)), the fibredness, and the strongly quasi-positive condition [BS19, Theorem 1.5].
Hence the classification also works for instanton L-space knots.

In |LV21], it is shown that all closures of 3-braid except K (3, ¢;2,p) do not satisfy term (1) and
term (2) in Theorem [[.3] Hence they are not instanton L-space knots. O

Remark 7.2. For pretzel knots, there is another approach [LM16] to classify L-space knots, which
only depends on term (1) in Theorem [[3] the inequality (L2]), the fibredness, and the direct
calculation on Fﬁ((S?’, P(3,-5,3,—2)). However, it is hard to calculate K HI(S?3, P(3,—5,3,—2))
directly, so we use the approach in [BM1§].

Remark 7.3. Note that K = K (3, ¢;2,p) with pg > 0is a (1, 1)-L-space knot from the proof of [Vafl8,
Theorem 3.1(a)]. By [LY20, Corollary 1.5], we know that dime KHI(S3, K) = dimg, HFK (53, K).
However, we do not know if K is an instanton L-space knot because [Vafl5, Theorem 3.1(a)] depends
on the calculation of the chain complex CFK~(S%, K) by a genus one doubly-pointed Heegaard
diagram.

Proof of Corollary 1.4, This follows directly from Proposition [l and Remark O

Remark 7.4. There is a family of twisted torus knots K (p, ¢; 2, m) with some conditions in [Mor06,
Theorem 5] whose Alexander polynomials do not satisfy term (1) in Theorem[I.3l Thus, those knots
are also not instanton L-space knots and hence SU(2)-abundant. In general, the classification of
L-space knots for twisted torus knots is still open; see [Vafl5, Mot16, BM19] for some special cases.

Then we consider satellite knots and cable knots. There are some useful theorems.
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Definition 7.5 (|SZ20]). A knot K < S? is called SU(2)-averse if there are infinitely many
r € Q{0} so that all representations m (S3(K)) — SU(2) have abelian images.

Remark 7.6. If b1(Y) = 0, then an SU(2) representation of Y has abelian image if and only if it
has cyclic image.

Theorem 7.7 (|SZ20, Theorem 1.8]). Let K < S3 be a nontrivial knot, and suppose that some
satellite P(K) with winding number w is SU(2)-averse. Then we have the following.

(1) If P(U) is not the unknot U, then it is also SU(2)-averse.
(2) If w =0, then K is SU(2)-averse.

Theorem 7.8 (|SZ20, Theorem 10.6]). Let K = S® be a nontrivial knot, and let p, q € Z satisfying
ged(p,q) =1 and ¢ = 2. If cable knot K, 4 of K is SU(2)-averse, then K is also SU(2)-averse.

Theorem 7.9 (|[BS19, Lemma 8.5]). Let K < S3 be a nontrivial knot, and let p,q € Z satisfying
ged(p,q) = 1,9 = 2, and p/q > 2g(K) — 1. Then the cable knot K, 4 is a positive instanton L-space
knot if and only if K is an instanton L-space knot.

Definition 7.10. A K < S2 is called a distinguished knot if it is an alternating knot, a Mon-
tesinos knot, or a knot from a 3-braid except the unknot, T(2,2n+1), P(—2,3,2n+ 1) with n € N4,
K (3,q;2,p) with pg > 0, and their mirrors.

Note that distinguished knots are not instanton L-space knots and hence not SU(2)-averse by
Remark Then we have the following corollaries.

Corollary 7.11. Suppose P(K) < S3 is a satellite knot with winding number w > 0 of the pattern
P < 8! x D% If one of the following holds, then P(K) is not SU(2)-averse:

(1) P(U) is a distinguished knot;

(2) w# 0 and K is a distinguished knot.

Corollary 7.12. Let K < S3 be a distinguished knot, and let p, q € Z satisfying ged(p,q) = 1,q = 2,
and p/q > 29(K) — 1. Then the cable knot K, 4 is SU(2)-abundant.

Finally, we strengthen a result in [BS19, Theorem 1.8].

Corollary 7.13. Suppose K < S3 is a nontrivial knot and suppose S3(K) does not have irreducible
SU(2) representations. Then K is a prime, fibred, strongly quasi-positive knot of genus two, and
its instanton knot homology has the form

1 i <2,

(7.1) dimec KHI(S? K, S,i) =
0 else.

Proof. By Remark [L8) we know that K is an instanton L-space. Then Theorem applies. By
[BS19, Theorem 1.8] we know K is fibred, so [BS19, Theorem 1.11] applies and we obtain (ZI)). O

Remark 7.14. In |[LL21], the first author and Liang proved that if KHI(S3, K) has the form (1))
for some knot K = S3, then K must be an instanton L-space knot. Then by [BS19, Theorem 1.5],
we know that S3(K) must be an instanton L-space. However, it is not enough to figure out whether
S3(K) has irreducible SU(2) representations.
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8. FURTHER DIRECTIONS

In this section, we discuss some further directions of techniques introduced in this paper.

First, in Heegaard Floer homology, Ozsvath and Szabé [0S08,[0S11] introduced a mapping cone
formula. Roughly speaking, for a null-homologous knot K in a closed 3-manifold Y, the homology
ﬁ'(YT (K)) for any slope r can be computed by the filtrations on ﬁ'(Y) induced by K and — K.
The large surgery formula is the first step of their proof, which is recovered in instanton theory by
Theorem To prove an analog of the mapping cone formula in instanton theory. We need to
further recover the following structures.

Fact. Suppose K is a null-homologous in a closed 3-manifold Y. For any integer n, suppose W, (K)
is the cobordism from Y to Y, (K) induced by attaching 4-dimensional 2-handle and suppose W, (K)
is the cobordism from Y;,(K) to Y obtained from —W,,(K) by turning around two ends. We have
the following structures in Heegaard Floer theory.

(1) There is a spin® decomposition of the cobordism map:

HFW.(K)= Y HFWy(K),s): HF(Y) — HF(Y,(K)).
s€Spin¢ (W, (K))

Also, there is a spin® decomposition of f{?(W,’l (K)).

(2) For a large enough n, the spin® decomposition of ﬁ'(W{L(K )) is compatible with some maps
constructed by the filtrations on CF (V) from K and —K.

(3) For any integer n and any positive integer m, there is a generalized surgery exact triangle

HE(Y,(K)) HE (Y (K))

e

@ HE(Y)

where the map F' is related to the spin® decomposition of ﬁ(Wr’L(K))

Baldwin and Sivek constructed an analog of the term (1) in instanton theory when by (W, (K)) =
0. The assumption of by is due to the proof of some structure theorem for the cobordism map. If
b1 = 1, then it is harder to prove the structure theorem. Also, in their construction, the closures to
define I*(Y') and I*(Y;,(K)) are special (the connected sum with 7%). It is unknown how to extend
the decomposition of the cobordism map to general closures of balanced sutured manifolds.

For the term (2), we can still use the lifts of two spectral sequences to recover filtrations. However,
without the decomposition of the cobordism map, it is impossible to write down a precise statement.

For term (3), we expect that the proof [BD9H, IScalf] of the usual exact triangle between
IHY), I*(Y,,(K)), and I*(Y,,11(K)) can be applied to the generalized triangle with some modifi-
cations.
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Conjecture 8.1. Consider manifolds defined above. For any integer n and any positive integer m,
there is an exact triangle

S A

DL F(Y)
where the map F is related to the cobordism W/ (K).

Second, for any quasi-alternating knot K < S3, Petkova [Pet13, Section 3] proved that the chain
complex CFK~ (83, K) is determined by A (t) and the signature o(K). The essential observation
is that in this case, CFK (5%, K) is chain homotopic to

(HFEK (S, K) ®F,[U], 0. + Udy).

where 0, and 0,, shift the Alexander grading only by one. Then the result follows from the equation
0, 0 0w = 0y 0 0, and algebraic lemmas. We can regard d; and d_ on KHI(—S?, K) as analogs of
Ow and 0, in instanton theory, respectively. If the following conjecture was proven, then we could
apply algebraic lemmas in [Petl3, Section 3] to determine the differentials d; and d_ by Ag(t)
and o(K). By the large surgery formula, we could compute I*(—S_,(K)) for |n| = 2g9(K) + 1. By
results in [BS204], we might calculate I*(—S,.(K)) for any quasi-alternating knot, which generalizes
Theorem

Conjecture 8.2. Suppose K — S? is a quasi-alternating knot and suppose the maps d, and d_
are on KHI(—S3, K). Then the maps shift the grading associated to the Seifert surface by one, and
the following equation holds

d+0d_£d_0d+,

where = means it holds up to multiplication by a unit in C.
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